On the Mass Concentration for Bose-Einstein Condensates with Attractive Interactions

被引:185
作者
Guo, Yujin [1 ]
Seiringer, Robert [2 ]
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
[2] IST Austria, A-3400 Klosterneuburg, Austria
关键词
Bose-Einstein condensation; attractive interactions; Gross-Pitaevskii functional; mass concentration; symmetry breaking; NONLINEAR SCHRODINGER-EQUATION; SYMMETRY-BREAKING; BOUND-STATES; POSITIVE SOLUTIONS; BIFURCATION; UNIQUENESS; COLLAPSE; VORTEX; GAS;
D O I
10.1007/s11005-013-0667-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider two-dimensional Bose-Einstein condensates with attractive interaction, described by the Gross-Pitaevskii functional. Minimizers of this functional exist only if the interaction strength a satisfies , where Q is the unique positive radial solution of in . We present a detailed analysis of the behavior of minimizers as a approaches a*, where all the mass concentrates at a global minimum of the trapping potential.
引用
收藏
页码:141 / 156
页数:16
相关论文
共 40 条
[1]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[2]  
[Anonymous], 2003, SOBOLEV SPACES
[3]   Symmetry breaking regime in the nonlinear Hartree equation [J].
Aschbacher, WH ;
Fröhlich, J ;
Graf, GM ;
Schnee, K ;
Troyer, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (08) :3879-3891
[4]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[5]   Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions (vol 75, pg 1687, 1995) [J].
Bradley, CC ;
Sackett, CA ;
Tollett, JJ ;
Hulet, RG .
PHYSICAL REVIEW LETTERS, 1997, 79 (06) :1170-1170
[6]   Bose-Einstein condensation of lithium: Observation of limited condensate number [J].
Bradley, CC ;
Sackett, CA ;
Hulet, RG .
PHYSICAL REVIEW LETTERS, 1997, 78 (06) :985-989
[7]   Standing waves with a critical frequency for nonlinear Schrodinger equations [J].
Byeon, J ;
Wang, ZQ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 165 (04) :295-316
[8]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[9]   Rapidly rotating atomic gases [J].
Cooper, N. R. .
ADVANCES IN PHYSICS, 2008, 57 (06) :539-616
[10]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512