Coking-resistant NbOx-Ni-Ce0.8Sm0.2O1.9 anode material for methanol-fueled solid oxide fuel cells

被引:13
作者
Yao, Xueli [1 ,2 ]
Fan, Lijun [1 ,2 ]
Gan, Tian [1 ,2 ]
Hou, Nianjun [1 ,2 ]
Li, Ping [1 ,2 ]
Zhao, Yicheng [1 ,2 ]
Li, Yongdan [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn, State Key Lab Chem Engn, Tianjin Key Lab Appl Catalysis Sci & Technol, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Aalto Univ, Dept Chem & Met Engn, Kemistintie 1, FI-00076 Aalto, Finland
关键词
Cermet anode; Niobium oxide; Solid oxide fuel cell; Coking resistance; Methanol; DOUBLE PEROVSKITE; HIGH-TEMPERATURE; PERFORMANCE; HYDROGEN; NANOCOMPOSITE; COMPOSITE; CONDUCTIVITIES; STABILITY; CATALYSTS; EFFICIENT;
D O I
10.1016/j.ijhydene.2018.03.186
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
NbOx is added in Ni-Ce0.8Sm0.2P1.9 by impregnation as an anode material for solid oxide fuel cells fed with methanol. Nb (IV) and Nb (V) exist in the reduced anode. The addition of Nb reduces the binding energy of Ni. The catalytic activity of the anode and the performance of the single cell both increase with the increase of Nb. At 700 degrees C, the cell with 5NbO(x)-Ni-Ce0.8Sm0.2P1.9 anode and Ce0.8Sm0.2P1.9 -carbonate electrolyte shows a output power density of 687 mW cm(-2). Meanwhile, water produced in the anode is absorbed by NbOx and forms surface hydroxyl groups, which facilitates the removal of carbon. The addition of NbOx decreases the amount of deposited carbon in the humidified methanol atmosphere significantly, and an improved stability of the single cell is achieved. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:12748 / 12755
页数:8
相关论文
共 44 条
[1]  
Asghar MI, 2017, FRONT CHEM SCI ENG, P1
[2]   Advanced low-temperature ceramic nanocomposite fuel cells using ultra high ionic conductivity electrolytes synthesized through freeze-dried method and solid-route [J].
Asghar, Muhammad Imran ;
Heikkila, Mikko ;
Lund, Peter D. .
MATERIALS TODAY ENERGY, 2017, 5 :338-346
[3]   Advanced anodes for high-temperature fuel cells [J].
Atkinson, A ;
Barnett, S ;
Gorte, RJ ;
Irvine, JTS ;
Mcevoy, AJ ;
Mogensen, M ;
Singhal, SC ;
Vohs, J .
NATURE MATERIALS, 2004, 3 (01) :17-27
[4]   Effect of MoO3 on catalytic performance and stability of the SBA-16 supported Ni-catalyst for CO methanation [J].
Bian, Zhicheng ;
Meng, Xin ;
Tao, Miao ;
Lv, YuHao ;
Xin, Zhong .
FUEL, 2016, 179 :193-201
[5]   Raman study of the phase transitions sequence in pure WO3 at high temperature and in HxWO3 with variable hydrogen content [J].
Cazzanelli, E ;
Vinegoni, C ;
Mariotto, G ;
Kuzmin, A ;
Purans, J .
SOLID STATE IONICS, 1999, 123 (1-4) :67-74
[6]   Effect of CaO concentration on enhancement of grain-boundary conduction in gadolinia-doped ceria [J].
Cho, Pyeong-Seok ;
Lee, Sung Bo ;
Cho, Yoon Ho ;
Kim, Doh-Yeon ;
Park, Hyun-Min ;
Lee, Jong-Heun .
JOURNAL OF POWER SOURCES, 2008, 183 (02) :518-523
[7]   Surface modification of Ni-YSZ using niobium oxide for sulfur-tolerant anodes in solid oxide fuel cells [J].
Choi, Songho ;
Wang, Jenghan ;
Cheng, Zhe ;
Liu, Meilin .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (05) :B449-B454
[8]   A synthesis of CO-tolerant Nb2O5-promoted Pt/C catalyst for direct methanol fuel cell; its physical and electrochemical characterization [J].
Chun, Hee-Joon ;
Kim, Dong Baek ;
Lim, Dong-Ha ;
Lee, Weon-Doo ;
Lee, Ho-In .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (12) :6399-6408
[9]   Direct utilization of methanol and ethanol in solid oxide fuel cells using Cu-Co(Ru)/Zr0.35Ce0.65O2-δ anodes [J].
Cimenti, Massimiliano ;
Hill, Josephine M. .
JOURNAL OF POWER SOURCES, 2010, 195 (13) :3996-4001
[10]   Effect of the type of ceria dopant on the performance of Ni/CeO2 SOFC anode for ethanol internal reforming [J].
da Silva, A. A. A. ;
Bion, N. ;
Epron, F. ;
Baraka, S. ;
Fonseca, F. C. ;
Rabelo-Neto, R. C. ;
Mattos, L. V. ;
Noronha, F. B. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 206 :626-641