THE MESH ADAPTIVE DIRECT SEARCH ALGORITHM FOR GRANULAR AND DISCRETE VARIABLES

被引:43
作者
Audet, Charles [1 ,2 ]
Le Digabel, Sebastien [1 ,2 ]
Tribes, Christophe [1 ,2 ]
机构
[1] Polytech Montreal, GERAD, CP 6079,Succ Ctr Ville, Montreal, PQ H3C 3A7, Canada
[2] Polytech Montreal, Dept Math & Genie Ind, CP 6079,Succ Ctr Ville, Montreal, PQ H3C 3A7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
blackbox optimization; derivative-free optimization; mesh adaptive direct search; granular variables; discrete variables; SURROGATE MODEL ALGORITHM; NELDER-MEAD ALGORITHM; GENETIC-ALGORITHM; OPTIMIZATION PROBLEMS; CONVERGENCE; DECOMPOSITION; DESIGN; NUMBER;
D O I
10.1137/18M1175872
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The mesh adaptive direct search (Mads) algorithm is designed for blackbox optimization problems for which the functions defining the objective and the constraints are typically the outputs of a simulation seen as a blackbox. It is a derivative-free optimization method designed for continuous variables and is supported by a convergence analysis based on the Clarke calculus. This work introduces a modification to the Mads algorithm so that it handles granular variables, i.e., variables with a controlled number of decimals. This modification involves a new way of updating the underlying mesh so that the precision is progressively increased. A corollary of this new approach is the ability to treat discrete variables. Computational results are presented using the NOMAD software, the free C++ distribution of the Mads algorithm.
引用
收藏
页码:1164 / 1189
页数:26
相关论文
共 76 条
[1]  
ABRAMSON M, 2007, PAC J OPTIM, V3, P477
[2]   Mixed variable optimization of a load-bearing thermal insulation system using a filter pattern search algorithm [J].
Abramson, MA .
OPTIMIZATION AND ENGINEERING, 2004, 5 (02) :157-177
[3]   Mesh adaptive direct search algorithms for mixed variable optimization [J].
Abramson, Mark A. ;
Audet, Charles ;
Chrissis, James W. ;
Walston, Jennifer G. .
OPTIMIZATION LETTERS, 2009, 3 (01) :35-47
[4]  
[Anonymous], 1954, American Journal of Mathematics, DOI [10.2307/2372648, DOI 10.2307/2372648]
[5]   Mesh adaptive direct search algorithms for constrained optimization [J].
Audet, C ;
Dennis, JE .
SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (01) :188-217
[6]   Convergence results for generalized pattern search algorithms are tight [J].
Audet, C .
OPTIMIZATION AND ENGINEERING, 2004, 5 (02) :101-122
[7]   Analysis of generalized pattern searches [J].
Audet, C ;
Dennis, JE .
SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (03) :889-903
[8]   Pattern search algorithms for mixed variable programming [J].
Audet, C ;
Dennis, JE .
SIAM JOURNAL ON OPTIMIZATION, 2001, 11 (03) :573-594
[9]  
AUDET C., 2015, NOMAD PROJECT
[10]  
AUDET C., 2019, NUMERICAL NONSMOOTH