Using Word Embeddings and Deep Learning for Supervised Topic Detection in Social Networks

被引:2
作者
Gutierrez-Batista, Karel [1 ]
Campana, Jesus R. [1 ]
Vila, Maria-Amparo [1 ]
Martin-Bautista, Maria J. [1 ]
机构
[1] Univ Granada, Dept Comp Sci & Artificial Intelligence, ETSIIT, Granada 18071, Spain
来源
FLEXIBLE QUERY ANSWERING SYSTEMS | 2019年 / 11529卷
基金
欧盟地平线“2020”;
关键词
Topic detection; Word embeddings; Deep learning;
D O I
10.1007/978-3-030-27629-4_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we show how word embeddings can be used to evaluate semantically the topic detection process in social networks. We propose to create and train a word embeddings with word2vec model to be used for text classification process. Then when the documents are classified, we use a pre-trained word embeddings and two similarity measures for semantic evaluation of the classification process. In particular, we perform experiments with two datasets of Twitter, using both bag-of-words with conventional classification algorithms and word embeddings with deep learning-based classification algorithms. Finally, we perform a benchmark and make some inferences about results.
引用
收藏
页码:155 / 165
页数:11
相关论文
共 24 条
[21]  
Ruder S., 2016, P 2016 C EMPIRICAL M, P999, DOI [DOI 10.18653/V1/D16-1103, 10.18653/v1/D16-1103]
[22]   More than Bags of Words: Sentiment Analysis with Word Embeddings [J].
Rudkowsky, Elena ;
Haselmayer, Martin ;
Wastian, Matthias ;
Jenny, Marcelo ;
Emrich, Stefan ;
Sedlmair, Michael .
COMMUNICATION METHODS AND MEASURES, 2018, 12 (2-3) :140-157
[23]   On strategies for imbalanced text classification using SVM: A comparative study [J].
Sun, Aixin ;
Lim, Ee-Peng ;
Liu, Ying .
DECISION SUPPORT SYSTEMS, 2009, 48 (01) :191-201
[24]  
Xun GX, 2016, IEEE DATA MINING, P1299, DOI [10.1109/ICDM.2016.0176, 10.1109/ICDM.2016.33]