Using Word Embeddings and Deep Learning for Supervised Topic Detection in Social Networks

被引:2
作者
Gutierrez-Batista, Karel [1 ]
Campana, Jesus R. [1 ]
Vila, Maria-Amparo [1 ]
Martin-Bautista, Maria J. [1 ]
机构
[1] Univ Granada, Dept Comp Sci & Artificial Intelligence, ETSIIT, Granada 18071, Spain
来源
FLEXIBLE QUERY ANSWERING SYSTEMS | 2019年 / 11529卷
基金
欧盟地平线“2020”;
关键词
Topic detection; Word embeddings; Deep learning;
D O I
10.1007/978-3-030-27629-4_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we show how word embeddings can be used to evaluate semantically the topic detection process in social networks. We propose to create and train a word embeddings with word2vec model to be used for text classification process. Then when the documents are classified, we use a pre-trained word embeddings and two similarity measures for semantic evaluation of the classification process. In particular, we perform experiments with two datasets of Twitter, using both bag-of-words with conventional classification algorithms and word embeddings with deep learning-based classification algorithms. Finally, we perform a benchmark and make some inferences about results.
引用
收藏
页码:155 / 165
页数:11
相关论文
共 24 条
[1]  
[Anonymous], 1998, LEARNING TEXT CATEGO
[2]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[3]  
Bojanowski Piotr, 2017, Trans. Assoc. Comput. Linguist., V5, P135, DOI DOI 10.1162/TACL_A_00051
[4]  
Chung J., 2014, NIPS 2014 WORKSH DEE
[5]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[6]  
Esposito F., 2016, Topic modelling with word embeddings, CLiC-it/EVALITA
[7]  
Fan RE, 2008, J MACH LEARN RES, V9, P1871
[8]  
Forman George., 2008, PROCEEDING 17 ACM C, P263, DOI DOI 10.1145/1458082.1458119
[9]   Bayesian network classifiers [J].
Friedman, N ;
Geiger, D ;
Goldszmidt, M .
MACHINE LEARNING, 1997, 29 (2-3) :131-163
[10]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]