Increased glutamic acid decarboxylase expression in the hippocampus impairs learning and memory in Fmr1 knockout mice

被引:0
作者
Dai, Li-Jun [1 ]
Huang, Yue-Ling [1 ]
Sun, Wei-Wen [2 ]
Ye, Bing-Fei [1 ]
Chen, Sheng-Qiang [2 ]
机构
[1] Guangzhou Med Univ, Lab Anim Ctr, Guangzhou 510182, Guangdong, Peoples R China
[2] Guangzhou Med Univ, Affiliated Hosp 2, Inst Neurosci, Guangzhou 510260, Guangdong, Peoples R China
关键词
Passive avoidance test; Fmr1 knockout mice; behaviour; GAD; hippocampus; FRAGILE-X-SYNDROME; MENTAL-RETARDATION PROTEIN; MOUSE MODEL; KO MICE; PHENOTYPES; DISORDER; INSIGHTS; SPINES; AUTISM;
D O I
暂无
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
This study compares the behavioral differences in 4- and 6-week-old mice in hippocampal expression of glutamic acid decarboxylase (GAD). Using immunoblotting and immunohistochemical staining, we compared the changed GAD expression in Fmr1 knockout mice. We detected the amino acid levels of hippocampus by high performance liquid chromatography, the data were analyzed with Multifactor Variance Analysis. Fmr1 knock out (KO) mice showed a higher expression of GAD65/67 protein in hippocampus than the Fmr1 wild type (WT) mice (P < 0.05). The six-week KO mice and WT mice exhibited a higher expression of GAD65/67 protein (in hippocampus) than their four-week counterpart (P < 0.05). KO mice showed a higher number of GAD65/67-positive neurons in hippocampus and cortex than the WT mice of the same week (P < 0.05). The six-week KO mice and WT mice contain a greater number of GAD65/GAD67-positive neurons in hippocampus than their four-week counterpart (P < 0.05). The Upsilon-aminobutyric acid and aspartate levels in KO group were lower than WT mice, while the level of glutamate in KO was higher than WT group. Altered GAD protein levels in KO mice may play an important role in their abnormal learning and memory behavior in Fmr1 knockout mice.
引用
收藏
页码:3121 / 3134
页数:14
相关论文
共 45 条
[1]   Early developmental alterations in GABAergic protein expression in fragile X knockout mice [J].
Adusei, Daniel C. ;
Pacey, Laura K. K. ;
Chen, Duke ;
Hampson, David R. .
NEUROPHARMACOLOGY, 2010, 59 (03) :167-171
[2]   A multidisciplinary approach to the management of individuals with fragile X syndrome [J].
Alanay, Y. ;
Unal, F. ;
Turanli, G. ;
Alikasifoglu, M. ;
Alehan, D. ;
Akyol, U. ;
Belgin, E. ;
Sener, C. ;
Aktas, D. ;
Boduroglu, K. ;
Utine, E. ;
Volkan-Salanci, B. ;
Ozusta, S. ;
Genc, A. ;
Basar, F. ;
Sevinc, S. ;
Tuncbilek, E. .
JOURNAL OF INTELLECTUAL DISABILITY RESEARCH, 2007, 51 :151-161
[3]   Understanding fragile X syndrome: insights from animal models [J].
Bakker, CE ;
Oostra, BA .
CYTOGENETIC AND GENOME RESEARCH, 2003, 100 (1-4) :111-123
[4]   Therapeutic implications of the mGluR theory of fragile X mental retardation [J].
Bear, MF .
GENES BRAIN AND BEHAVIOR, 2005, 4 (06) :393-398
[5]   The mGIuR theory of fragile X mental retardation [J].
Bear, MF ;
Huber, KM ;
Warren, ST .
TRENDS IN NEUROSCIENCES, 2004, 27 (07) :370-377
[6]   Critical role of the 65-kDa isoform of glutamic acid decarboxylase in consolidation and generalization of Pavlovian fear memory [J].
Bergado-Acosta, Jorge R. ;
Sangha, Susan ;
Narayanan, Rajeevan T. ;
Obata, Kunihiko ;
Pape, Hans-Christian ;
Stork, Oliver .
LEARNING & MEMORY, 2008, 15 (03) :163-171
[7]   Fmr1 KO mice as a possible model of autistic features [J].
Bernardet, Maude ;
Crusio, Wim E. .
THESCIENTIFICWORLDJOURNAL, 2006, 6 :1164-1176
[8]   Fragile X mice develop sensory hyperreactivity to auditory stimuli [J].
Chen, L ;
Toth, M .
NEUROSCIENCE, 2001, 103 (04) :1043-1050
[9]   The fragile X continuum: new advances and perspectives [J].
Cornish, K. ;
Turk, J. ;
Hagerman, R. .
JOURNAL OF INTELLECTUAL DISABILITY RESEARCH, 2008, 52 :469-482
[10]   The nature of the spatial deficit in young females with Fragile-X syndrome: A neuropsychological and molecular perspective [J].
Cornish, KM ;
Munir, F ;
Cross, G .
NEUROPSYCHOLOGIA, 1998, 36 (11) :1239-1246