A Novel Strategy to Suppress Capacity and Voltage Fading of Li- and Mn-Rich Layered Oxide Cathode Material for Lithium-Ion Batteries

被引:176
作者
Zhang, Shiming [1 ,2 ]
Gu, Haitao [3 ]
Pan, Hongge [1 ,2 ]
Yang, Suhui [1 ,2 ]
Du, Wubin [1 ,2 ]
Li, Xiang [1 ,2 ]
Gao, Mingxia [1 ,2 ]
Liu, Yongfeng [1 ,2 ]
Zhu, Min [4 ]
Ouyang, Liuzhang [4 ]
Jian, Dechao [3 ]
Pan, Feng [5 ]
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
[3] Shanghai Inst Space Power Sources, Shanghai 201100, Peoples R China
[4] South China Univ Technol, Key Lab Adv Energy Storage Mat Guangdong Prov, Sch Mat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
[5] Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
ENHANCED CYCLING STABILITY; ELECTROCHEMICAL PERFORMANCE; SURFACE MODIFICATION; POSITIVE ELECTRODE; LI2MNO3; COMPONENT; RATE CAPABILITY; ACTIVATION; DECAY; NI;
D O I
10.1002/aenm.201601066
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Poor cycling stability is one of the key scientific issues needing to be solved for Li- and Mn-rich layered oxide cathode. In this paper, sodium carboxymethyl cellulose (CMC) is first used as a novel binder in Li1.2Ni0.13Co0.13Mn0.54O2 cathode to enhance its cycling stability. Electrochemical performance is conducted by galvanostatic charge and discharge. Structure and morphology are characterized by X-ray diffraction, scanning electronic microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. Results reveal that the CMC as binder can not only stabilize the electrode structure by preventing the electrode materials to detach from the current collector but also suppress the voltage fading of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode due to Na+ ions doping. Most importantly, the dissolution of metal elements from the cathode materials into the electrolyte is also inhibited.
引用
收藏
页数:12
相关论文
共 44 条
[1]   Studies of Li and Mn-Rich Lix[MnNiCo]O2 Electrodes: Electrochemical Performance, Structure, and the Effect of the Aluminum Fluoride Coating [J].
Amalraj, Francis ;
Talianker, Michael ;
Markovsky, Boris ;
Burlaka, Luba ;
Leifer, Nicole ;
Goobes, Gil ;
Erickson, Evan M. ;
Haik, Ortal ;
Grinblat, Judith ;
Zinigrad, Ella ;
Aurbach, Doron ;
Lampert, Jordan K. ;
Shin, Ji-Yong ;
Schulz-Dobrick, Martin ;
Garsuch, Arnd .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (11) :A2220-A2233
[2]   A Li-Rich Layered Cathode Material with Enhanced Structural Stability and Rate Capability for Li-on Batteries [J].
Ates, Mehmet Nurullah ;
Mukerjee, Sanjeev ;
Abraham, K. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (03) :A355-A363
[3]   Mitigation of Layered to Spinel Conversion of a Li-Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries [J].
Ates, Mehmet Nurullah ;
Jia, Qingying ;
Shah, Ankita ;
Busnaina, Ahmed ;
Mukerjee, Sanjeev ;
Abraham, K. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (03) :A290-A301
[4]   Enhanced electrochemical performance and thermal stability of a CePO4-coated Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion batteries [J].
Chen, J. J. ;
Li, Z. D. ;
Xiang, H. F. ;
Wu, W. W. ;
Cheng, S. ;
Zhang, L. J. ;
Wang, Q. S. ;
Wu, Y. C. .
RSC ADVANCES, 2015, 5 (04) :3031-3038
[5]   Ultra-thin Al2O3 coating on the acid-treated 0.3Li2MnO3•0.7LiMn0.60Ni0.25Co0.15O2 electrode for Li-ion batteries [J].
Choi, Mansoo ;
Ham, Giyul ;
Jin, Bong-Soo ;
Lee, Sang-Min ;
Lee, Young Moo ;
Wang, Guoxiu ;
Kim, Hyun-Soo .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 608 :110-117
[6]   Countering the Voltage Decay in High Capacity xLi2MnO3•(1-x)LiMO2 Electrodes (M=Mn, Ni, Co) for Li+-Ion Batteries [J].
Croy, Jason R. ;
Kim, Donghan ;
Balasubramanian, Mahalingam ;
Gallagher, Kevin ;
Kang, Sun-Ho ;
Thackeray, Michael M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (06) :A781-A790
[7]   A High Areal Capacity Flexible Lithium-Ion Battery with a Strain-Compliant Design [J].
Gaikwad, Abhinav M. ;
Khau, Brian V. ;
Davies, Greg ;
Hertzberg, Benjamin ;
Steingart, Daniel A. ;
Arias, Ana Claudia .
ADVANCED ENERGY MATERIALS, 2015, 5 (03)
[8]   High Performance Composite Lithium-Rich Nickel Manganese Oxide Cathodes for Lithium-Ion Batteries [J].
Gummow, Rosalind J. ;
Sharma, Neeraj ;
Feng, Ruishu ;
Han, Guihong ;
He, Yinghe .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (10) :A1856-A1862
[9]   Surface coating of lithium-manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries [J].
Guo, Shaohua ;
Yu, Haijun ;
Liu, Pan ;
Liu, Xizheng ;
Li, De ;
Chen, Mingwei ;
Ishida, Masayoshi ;
Zhou, Haoshen .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (12) :4422-4428
[10]   Tunable and Robust Phosphite-Derived Surface Film to Protect Lithium-Rich Cathodes in Lithium-Ion Batteries [J].
Han, Jung-Gu ;
Lee, Sung Jun ;
Lee, Jaegi ;
Kim, Jeom-Soo ;
Lee, Kyu Tae ;
Choi, Nam-Soon .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (15) :8319-8329