An aprotic lithium/polyiodide semi-liquid battery with an ionic shield

被引:12
作者
Ren, Y. X. [1 ]
Liu, M. [1 ]
Zhao, T. S. [1 ]
Zeng, L. [1 ]
Wu, M. C. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Kowloon, Hong Kong, Peoples R China
关键词
Lithium/polyiodide battery; Shuttle effect; Ion selective membrane; Electrostatic repulsion; LITHIUM-SULFUR BATTERIES; REDOX FLOW BATTERIES; HIGH-PERFORMANCE; POLYSULFIDE SHUTTLE; POLYMER BATTERY; ALL-VANADIUM; DEPOSITION; MEMBRANE; ELECTROLYTE; CATHOLYTE;
D O I
10.1016/j.jpowsour.2016.12.043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we report a high-energy-density lithium/polyiodide (Li/PI) semi-liquid battery with soluble polyiodide in ether-based solvents as the catholyte. The challenge of shuttle effect is addressed by adopting a hybrid membrane coated with negatively charged sulfonate-ended perfluoroalkyl polymer, which allows for inhibition of polyiodide shuttles due to the electrostatic repulsion. The assembled Li/PI battery demonstrates a superior volumetric energy density (170.5 Wh L-1), a stable cycling performance (>100 cycles, averaged decay < 0.16% at 0.2 C), a high energy efficiency (>84%, 100 cycles at 2 C), and a high coulombic efficiency (>95%, 100 cycles at 2 C). These high performances achieved suggest that the aprotic Li/polyiodide battery with a compact architecture has the potential for various energy storage applications. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 49 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Factors which limit the cycle life of rechargeable lithium (metal) batteries [J].
Aurbach, D ;
Zinigrad, E ;
Teller, H ;
Dan, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1274-1279
[3]  
Bai P., 2014, Nat Commun, V5
[4]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[5]   Performance and Degradation of A Lithium-Bromine Rechargeable Fuel Cell Using Highly Concentrated Catholytes [J].
Bai, Peng ;
Bazant, Martin Z. .
ELECTROCHIMICA ACTA, 2016, 202 :216-223
[6]   A dual-mode rechargeable lithium-bromine/oxygen fuel cell [J].
Bai, Peng ;
Viswanathan, Venkatasubramanian ;
Bazant, Martin Z. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (27) :14165-14172
[7]   Reduced polysulfide shuttle in lithium-sulfur batteries using Nafion-based separators [J].
Bauer, I. ;
Thieme, S. ;
Brueckner, J. ;
Althues, H. ;
Kaskel, S. .
JOURNAL OF POWER SOURCES, 2014, 251 :417-422
[8]   High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes [J].
Cai, Zhijun ;
Liu, Yanbo ;
Liu, Sisi ;
Li, Lei ;
Zhang, Yongming .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5690-5693
[9]  
Chen H., 2016, ADV ENERGY MAT, V6
[10]   Combination of Lightweight Elements and Nanostructured Materials for Batteries [J].
Chen, Jun ;
Cheng, Fangyi .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (06) :713-723