Quenched Large Deviations for Random Walk in a Random Environment

被引:27
作者
Yilmaz, Atilla [1 ]
机构
[1] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
基金
美国国家科学基金会;
关键词
REVERSIBLE MARKOV-PROCESSES;
D O I
10.1002/cpa.20283
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We take the point of view of a particle performing random walk with bounded jumps on Z(d) in a stationary and ergodic random environment. We prove the quenched large-deviation principle (LDP) for the pair empirical measure of the so-called environment Markov chain. By an appropriate contraction, we deduce the quenched LDP for the mean velocity of the particle and obtain a variational formula for the corresponding rate function. We propose an ansatz for the minimizer of this formula. When d = 1, we verify this ansatz and generalize the nearest-neighbor result of Comets, Gantert, and Zeitouni to walks with bounded jumps. (C) 2009 Wiley Periodicals, Inc.
引用
收藏
页码:1033 / 1075
页数:43
相关论文
共 33 条
[21]   HOMOGENIZATION OF LATERAL DIFFUSION ON A RANDOM SURFACE [J].
Duncan, Andrew B. .
MULTISCALE MODELING & SIMULATION, 2015, 13 (04) :1478-1506
[22]   Stochastic homogenization of random walks on point processes [J].
Faggionato, Alessandra .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (02) :662-705
[23]   EINSTEIN RELATION AND STEADY STATES FOR THE RANDOM CONDUCTANCE MODEL [J].
Gantert, Nina ;
Guo, Xiaoqin ;
Nagel, Jan .
ANNALS OF PROBABILITY, 2017, 45 (04) :2533-2567
[24]   INVARIANCE PRINCIPLE FOR THE RANDOM CONDUCTANCE MODEL WITH UNBOUNDED CONDUCTANCES [J].
Barlow, M. T. ;
Deuschel, J-D. .
ANNALS OF PROBABILITY, 2010, 38 (01) :234-276
[25]   Convergence to fractional kinetics for random walks associated with unbounded conductances [J].
Barlow, Martin T. ;
Cerny, Jiri .
PROBABILITY THEORY AND RELATED FIELDS, 2011, 149 (3-4) :639-673
[26]   An invariance principle for ergodic scale-free random environments [J].
Gwynne, Ewain ;
Miller, Jason ;
Sheffield, Scott .
ACTA MATHEMATICA, 2022, 228 (02) :303-384
[27]   Large deviations of the kernel density estimator in L1(Rd) for reversible Markov processes [J].
Lei, LZ .
BERNOULLI, 2006, 12 (01) :65-83
[28]   Kantorovich distance in the martingale CLT and quantitative homogenization of parabolic equations with random coefficients [J].
Mourrat, Jean-Christophe .
PROBABILITY THEORY AND RELATED FIELDS, 2014, 160 (1-2) :279-314
[29]   Hydrodynamic limit of simple exclusion processes in symmetric random environments via duality and homogenization [J].
Faggionato, Alessandra .
PROBABILITY THEORY AND RELATED FIELDS, 2022, 184 (3-4) :1093-1137
[30]   Synchronization and Spin-Flop Transitions for a Mean-Field XY Model in Random Field [J].
Collet, Francesca ;
Ruszel, Wioletta .
JOURNAL OF STATISTICAL PHYSICS, 2016, 164 (03) :645-666