Characterizing the transient electrocardiographic signature of ischemic stress using Laplacian Eigenmaps for dimensionality reduction

被引:4
作者
Good, W. W. [1 ,2 ,3 ]
Erem, B. [6 ]
Zenger, B. [1 ,2 ,3 ,4 ]
Coll-Font, J. [5 ]
Bergquist, J. A. [1 ,2 ,3 ]
Brooks, D. H. [7 ]
MacLeod, R. S. [1 ,2 ,3 ]
机构
[1] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Biomed Engn, Salt Lake City, UT USA
[3] Univ Utah, Nora Eccles Cardiovasc Res & Training Inst, Salt Lake City, UT USA
[4] Univ Utah, Sch Med, Salt Lake City, UT USA
[5] Massachusetts Gen Hosp, Cardiovasc Res Ctr CVRC, Boston, MA 02114 USA
[6] TrueMotion, Boston, MA USA
[7] Northeastern Univ, ECE Dept, SPIRAL Grp, Boston, MA USA
基金
美国国家卫生研究院;
关键词
Machine learning; Acute myocardial ischemia; Laplacian eigenmaps; Metric analysis; Cardiac electrophysiology; ST segment Changes; T wave changes; QRS changes; REGIONAL MYOCARDIAL ISCHEMIA; VENTRICULAR-ARRHYTHMIAS; ISOLATED PORCINE; TIME-COURSE; ECG;
D O I
10.1016/j.compbiomed.2020.104059
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objective: Despite a long history of ECG-based monitoring of acute ischemia quantified by several widely used clinical markers, the diagnostic performance of these metrics is not yet satisfactory, motivating a data-driven approach to leverage underutilized information in the electrograms. This study introduces a novel metric for acute ischemia, created using a machine learning technique known as Laplacian eigenmaps (LE), and compares the diagnostic and temporal performance of the LE metric against traditional metrics. Methods: The LE technique uses dimensionality reduction of simultaneously recorded time signals to map them into an abstract space in a manner that highlights the underlying signal behavior. To evaluate the performance of an electrogram-based LE metric compared to current standard approaches, we induced episodes of transient, acute ischemia in large animals and captured the electrocardiographic response using up to 600 electrodes within the intramural and epicardial domains. Results: The LE metric generally detected ischemia earlier than all other approaches and with greater accuracy. Unlike other metrics derived from specific features of parts of the signals, the LE approach uses the entire signal and provides a data-driven strategy to identify features that reflect ischemia. Conclusion: The superior performance of the LE metric suggests there are underutilized features of electrograms that can be leveraged to detect the presence of acute myocardial ischemia earlier and more robustly than current methods. Significance: The earlier detection capabilities of the LE metric on the epicardial surface provide compelling motivation to apply the same approach to ECGs recorded from the body surface.
引用
收藏
页数:10
相关论文
共 24 条
[1]  
Akkerhuis K.M., 2010, Comprehensive Electrocardiology, v, P1677
[2]  
Aras K., 2016, J ELECTROCARDIOL
[3]   Spatial organization of acute myocardial ischemia [J].
Aras, Kedar ;
Burton, Brett ;
Swenson, Darrell ;
MacLeod, Rob .
JOURNAL OF ELECTROCARDIOLOGY, 2016, 49 (03) :323-336
[4]   Sensitivity of epicardial electrical markers to acute ischemia detection [J].
Aras, Kedar ;
Burton, Brett ;
Swenson, Darrell ;
MacLeod, Rob .
JOURNAL OF ELECTROCARDIOLOGY, 2014, 47 (06) :836-841
[5]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[6]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[7]   Image-based modeling of acute myocardial ischemia using experimentally derived ischemic zone source representations [J].
Burton, B. M. ;
Aras, K. K. ;
Good, W. W. ;
Tate, J. D. ;
Zenger, B. ;
MacLeod, R. S. .
JOURNAL OF ELECTROCARDIOLOGY, 2018, 51 (04) :725-733
[8]  
Burton B.M., 2018, ANN BIOMED ENG, P1
[9]   Extensions to a manifold learning framework for time-series analysis on dynamic manifolds in bioelectric signals [J].
Erem, Burak ;
Orellana, Ramon Martinez ;
Hyde, Damon E. ;
Peters, Jurriaan M. ;
Duffy, Frank H. ;
Stovicek, Petr ;
Warfield, Simon K. ;
MacLeod, Rob S. ;
Tadmor, Gilead ;
Brooks, Dana H. .
PHYSICAL REVIEW E, 2016, 93 (04)
[10]  
Good W.W., 2018, 2018 Computing in Cardiology Conference (CinC), V45, P1