A MIN-MAX PRINCIPLE FOR NON-DIFFERENTIABLE FUNCTIONS WITH A WEAK COMPACTNESS CONDITION

被引:9
作者
Livrea, Roberto [1 ]
Marano, Salvatore A. [2 ]
机构
[1] Univ Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, Italy
[2] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
关键词
Critical points; locally Lipshitz continuous functions; weak Palais-Smale condition; Mountain Pass geometry; CRITICAL-POINT THEORY; EQUATIONS; THEOREMS;
D O I
10.3934/cpaa.2009.8.1019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general critical point result established by Ghoussoub is extended to the case of locally Lipschitz continuous functions satisfying a weak Palais-Smale hypothesis, which includes the so-called non-smooth Cerami condition. Some special cases are then pointed out.
引用
收藏
页码:1019 / 1029
页数:11
相关论文
共 22 条
[1]  
[Anonymous], 1990, CLASSICS APPL MATH
[2]  
[Anonymous], 1999, NONCONVEX OPTIM APPL
[3]  
BONANNO G, STRUCTURE CRITICAL S
[4]   VARIATIONAL-METHODS FOR NON-DIFFERENTIABLE FUNCTIONALS AND THEIR APPLICATIONS TO PARTIAL-DIFFERENTIAL EQUATIONS [J].
CHANG, KC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (01) :102-129
[5]   Quantitative deformation theorems and critical point theory [J].
Corvellec, JN .
PACIFIC JOURNAL OF MATHEMATICS, 1999, 187 (02) :263-279
[6]   NON-CONVEX MINIMIZATION PROBLEMS [J].
EKELAND, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :443-474
[7]  
EKELAND I, 1990, ERGEB MATH GRENZBEB, V19
[8]   Critical point theorems and applications to differential equations [J].
El Amrouss, AR .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (01) :129-142
[9]  
GASINSKI L, 2005, SER MATH APPL, V8
[10]   A GENERAL MOUNTAIN PASS PRINCIPLE FOR LOCATING AND CLASSIFYING CRITICAL-POINTS [J].
GHOUSSOUB, N ;
PREISS, D .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1989, 6 (05) :321-330