Bandgap scaling and negative differential resistance behavior of zigzag phosphorene antidot nanoribbons (ZPANRs)

被引:9
作者
Carmel, Santhia [1 ]
Pon, Adhithan [1 ]
Meenakshisundaram, N. [2 ]
Ramesh, R. [1 ]
Bhattacharyya, Arkaprava [1 ]
机构
[1] SASTRA Deemed Univ, Device Modeling Lab, Thanjavur 613401, Tamil Nadu, India
[2] Vivekananda Coll, Dept Phys, Madurai 625234, Tamil Nadu, India
关键词
FIELD-EFFECT TRANSISTORS; SINGLE-LAYER MOS2; ELECTRONIC-PROPERTIES; 2-DIMENSIONAL MATERIALS; GRAPHENE NANORIBBONS; TRANSPORT-PROPERTIES; INTEGRATED-CIRCUITS; BLACK PHOSPHORUS; DEVICE; LATTICES;
D O I
10.1039/c8cp01435c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work examines the prospect of phosphorene antidot nanoribbons (PANRs) using the density functional based tight binding (DFTB) method. Horizontally perforated PANRs with both armchair (A) and zigzag (Z) configurations were considered for electrical simulations. Our simulation results found that the APANRs cannot be scaled down with nanoribbon width, whereas ZPANRs can be scaled easily. Bandgap scaling in terms of ribbon width, length and antidot number was thoroughly analyzed for ZPANRs. In the end, a two-terminal device was constructed and transmission analysis was performed using the non-equilibrium Green's function (NEGF) methodology. A negative differential resistance (NDR) region appeared in the current-voltage characteristics of the ZPANRs, which paved a pathway for nano-device application.
引用
收藏
页码:14855 / 14863
页数:9
相关论文
共 59 条
[1]   Improving electronic transport of zigzag graphene nanoribbons by ordered doping of B or N atoms [J].
An, Yipeng ;
Wei, Xinyuan ;
Yang, Zhongqin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (45) :15802-15806
[2]  
Azizi M., 2018, ARXIV180102153
[3]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[4]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[5]   A monolithic 4-bit 2-Gsps resonant tunneling analog-to-digital converter [J].
Broekaert, TPE ;
Brar, B ;
van der Wagt, JPA ;
Seabaugh, AC ;
Morris, FJ ;
Moise, TS ;
Beam, EA ;
Frazier, GA .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1998, 33 (09) :1342-1349
[6]   OSCILLATIONS UP TO 712 GHZ IN INAS/ALSB RESONANT-TUNNELING DIODES [J].
BROWN, ER ;
SODERSTROM, JR ;
PARKER, CD ;
MAHONEY, LJ ;
MOLVAR, KM ;
MCGILL, TC .
APPLIED PHYSICS LETTERS, 1991, 58 (20) :2291-2293
[7]   GENERALIZED MANY-CHANNEL CONDUCTANCE FORMULA WITH APPLICATION TO SMALL RINGS [J].
BUTTIKER, M ;
IMRY, Y ;
LANDAUER, R ;
PINHAS, S .
PHYSICAL REVIEW B, 1985, 31 (10) :6207-6215
[8]   Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene [J].
Cai, Yongqing ;
Zhang, Gang ;
Zhang, Yong-Wei .
SCIENTIFIC REPORTS, 2014, 4
[9]  
Carmel A. Santhia, 2017, 2017 INT C, P14
[10]   Periodic Arrays of Phosphorene Nanopores as Antidot Lattices with Tunable Properties [J].
Cupo, Andrew ;
Das, Paul Masih ;
Chien, Chen-Chi ;
Danda, Gopinath ;
Kharche, Neerav ;
Tristant, Damien ;
Drndic, Marija ;
Meunier, Vincent .
ACS NANO, 2017, 11 (07) :7494-7507