Global solutions to one-dimensional compressible Navier-Stokes-Poisson equations with density-dependent viscosity

被引:9
作者
Ding, Shijin [2 ]
Wen, Huanyao [2 ]
Yao, Lei [1 ]
Zhu, Changjiang [1 ]
机构
[1] Cent China Normal Univ, Dept Math, Lab Nonlinear Anal, Wuhan 430079, Peoples R China
[2] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
compressible flow; Navier-Stokes equations; Poisson equation; viscosity; SMOOTH SOLUTIONS; EXISTENCE; SYSTEM; GAS;
D O I
10.1063/1.3078384
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we prove the global existence of weak solutions to one-dimensional compressible isentropic Navier-Stokes-Poisson equations with density-dependent viscosity and free boundaries. The initial density rho(0)is an element of W-1,W-2n is bounded below by a positive constant, and the initial velocity u(0)is an element of L-2n. In contrast to Jiang ["Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity," Methods Appl. Anal. 12, 239 (2005)], the Sobolev exponent n is less in this paper, and the viscosity coefficient mu=mu(rho) is a general function of rho including the cases mu(rho)=c(0)rho(theta) (0 <theta < 1) and mu(rho)=c(0), where c(0) is a positive constant.
引用
收藏
页数:17
相关论文
共 16 条
[1]  
[Anonymous], APPL MATH
[2]  
BARDOS C, 2008, INSTABILITY MODELS C, V2, P329
[3]  
CALALETDINOV R, ARXIVORGABSGRQC02120
[4]   A quasineutral type limit for the Navier-Stokes-Poisson system with large data [J].
Donatelli, D. ;
Marcati, P. .
NONLINEARITY, 2008, 21 (01) :135-148
[5]   Global smooth solutions of the equations of a viscous, heat-conducting, one-dimensional gas with density-dependent viscosity [J].
Jiang, S .
MATHEMATISCHE NACHRICHTEN, 1998, 190 :169-183
[6]  
Jiang S, 2005, METHODS APPL ANAL, V12, P239
[8]  
Okada M., 2002, ANN U FERRARA SEZ 7, V48, P1
[9]   Global smooth solutions of the compressible Navier-Stokes equations with density-dependent viscosity [J].
Qin, Xulong ;
Yao, Zheng-an .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (08) :2041-2061
[10]   One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries [J].
Qin, Xulong ;
Yao, Zheng-An ;
Zhao, Hongxing .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (02) :373-381