Silicon substrate effects on ionic current blockade in solid-state nanopores

被引:7
作者
Tsutsui, Makusu [1 ]
Yokota, Kazumichi [1 ,2 ]
Nakada, Tomoko [1 ]
Arima, Akihide [1 ]
Tonomura, Wataru [1 ]
Taniguchi, Masateru [1 ]
Washio, Takashi [1 ]
Kawai, Tomoji [1 ]
机构
[1] Osaka Univ, Inst Sci & Ind Res, Suita, Osaka, Japan
[2] Natl Inst Adv Ind Sci & Technol, Tokyo, Japan
基金
日本学术振兴会;
关键词
DIELECTRIC-BREAKDOWN; SINGLE; TRANSLOCATION; CONSTANT; CHARGE; SIZE;
D O I
10.1039/c8nr09042d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigated the roles of silicon substrate material compositions in ionic current blockade in solid-state nanopores. When detecting single nanoparticles using an ionic current in a Si3N4 nanopore supported on a doped silicon wafer, resistive pulses were found to be blunted significantly via signal retardation due to predominant contributions of large capacitance at the ultrathin membrane. Unexpectedly, in contrast, changing the substrate material to non-doped silicon led to the sharpening of the spike-like signal feature, suggesting a better temporal resolution of the cross-channel ionic current measurements by virtue of the thick intrinsic semiconductor layer that served to diminish the net chip capacitance. The present results suggest the importance of the choice of Si compositions regarding the capacitance effects to attain better spatiotemporal resolution in solid-state nanopore sensors.
引用
收藏
页码:4190 / 4197
页数:8
相关论文
共 31 条
[1]   Identifying Single Viruses Using Biorecognition Solid-State Nanopores [J].
Arima, Akihide ;
Harlisa, Ilva Hanun ;
Yoshida, Takeshi ;
Tsutsui, Makusu ;
Tanaka, Masayoshi ;
Yokota, Kazumichi ;
Tonomura, Wataru ;
Yasuda, Jiro ;
Taniguchi, Masateru ;
Washio, Takashi ;
Okochi, Mina ;
Kawai, Tomoji .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (48) :16834-16841
[2]   Measuring the Electric Charge and Zeta Potential of Nanometer-Sized Objects Using Pyramidal-Shaped Nanopores [J].
Arjmandi, Nima ;
Van Roy, Willem ;
Lagae, Liesbet ;
Borghs, Gustaaf .
ANALYTICAL CHEMISTRY, 2012, 84 (20) :8490-8496
[3]  
Coulter W. H, 1953, United States Patent, Patent No. 2656508
[4]   Solid-state nanopores [J].
Dekker, Cees .
NATURE NANOTECHNOLOGY, 2007, 2 (04) :209-215
[5]   STATIC DIELECTRIC-CONSTANT OF HEAVILY DOPED SEMICONDUCTORS [J].
DHAR, S ;
MARSHAK, AH .
SOLID-STATE ELECTRONICS, 1985, 28 (08) :763-766
[6]   Integrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration and noise reduction [J].
Goto, Yusuke ;
Yanagi, Itaru ;
Matsui, Kazuma ;
Yokoi, Takahide ;
Takeda, Ken-ichi .
SCIENTIFIC REPORTS, 2016, 6
[7]   Field-effect reconfigurable nanofluidic ionic diodes [J].
Guan, Weihua ;
Fan, Rong ;
Reed, Mark A. .
NATURE COMMUNICATIONS, 2011, 2
[8]  
Haywood D. G., 2011, ANAL CHEM, V6, P615
[9]   Nanopore analytics: sensing of single molecules [J].
Howorka, Stefan ;
Siwy, Zuzanna .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (08) :2360-2384
[10]   Integration of Solid-State Nanopores in Microfluidic Networks via Transfer Printing of Suspended Membranes [J].
Jain, Tarun ;
Guerrero, Ricardo Jose S. ;
Aguilar, Carlos A. ;
Karnik, Rohit .
ANALYTICAL CHEMISTRY, 2013, 85 (08) :3871-3878