Blocks of Mackey categories

被引:1
作者
Barker, Laurence [1 ]
机构
[1] Bilkent Univ, Dept Math, TR-06800 Ankara, Turkey
关键词
Mackey system; Block of a linear category; Locally semisimple; Biset category; FUNCTORS;
D O I
10.1016/j.jalgebra.2015.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a suitable small category F of homomorphisms between finite groups, we introduce two subcategories of the biset category, namely, the deflation Mackey category M-F(<-) and the inflation Mackey category M-F(->). Let G be the subcategory of F consisting of the injective homomorphisms. We shall show that, for a field K of characteristic zero, the K-linear category KMG = KMG <- = KMG -> has a semisimplicity property and, in particular, every block of KMG owns a unique simple functor up to isomorphism. On the other hand, we shall show that, when F is equivalent to the category of finite groups, the K-linear categories KMF <- and KMF -> each have a unique block. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:34 / 57
页数:24
相关论文
共 11 条
[1]  
Barker L., 2015, SIMPLE FUNCTORS ADMI
[2]   Central idempotents of the bifree and left-free double Burnside ring [J].
Boltje, Robert ;
Kuelshammer, Burkhard .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 202 (01) :161-193
[3]   A ghost ring for the left-free double Burnside ring and an application to fusion systems [J].
Boltje, Robert ;
Danz, Susanne .
ADVANCES IN MATHEMATICS, 2012, 229 (03) :1688-1733
[4]  
Bouc S., 2010, LECT NOTES MATH, V1990
[5]   MACKEY FUNCTORS AND SHARPNESS FOR FUSION SYSTEMS [J].
Diaz, Antonio ;
Park, Sejong .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2015, 17 (01) :147-164
[6]  
Green J.A., 2007, Lecture Notes in Mathematics, V830
[7]   ON FINITE COMPLETE GROUPS [J].
HARTLEY, B ;
ROBINSON, DJS .
ARCHIV DER MATHEMATIK, 1980, 35 (1-2) :67-74
[8]   THE STRUCTURE OF MACKEY FUNCTORS [J].
THEVENAZ, J ;
WEBB, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (06) :1865-1961
[9]  
Thevenaz J., 1990, P 2 INT GROUP THEOR, V23, P299
[10]   Stratifications and Mackey Functors II: Globally Defined Mackey Functors [J].
Webb, Peter .
JOURNAL OF K-THEORY, 2010, 6 (01) :99-170