Topological charge using cooling and the gradient flow

被引:47
作者
Alexandrou, C. [1 ,2 ]
Athenodorou, A. [1 ,2 ]
Jansen, K. [3 ]
机构
[1] Univ Cyprus, Dept Phys, CY-1678 Nicosia, Cyprus
[2] Cyprus Inst, Computation Based Sci & Technol Res Ctr, CY-2121 Nicosia, Cyprus
[3] DESY, NIC, D-15738 Zeuthen, Germany
来源
PHYSICAL REVIEW D | 2015年 / 92卷 / 12期
关键词
LATTICE; INSTANTONS; QUARKS;
D O I
10.1103/PhysRevD.92.125014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The equivalence of cooling to the gradient flow when the cooling step n(c) and the continuous flow step of gradient flow tau are matched is generalized to gauge actions that include rectangular terms. By expanding the link variables up to subleading terms in perturbation theory, we relate n(c) and tau and show that the results for the topological charge become equivalent when rescaling t similar or equal to n(c)/(3 - 15(c1)), where c(1) is the Symanzik coefficient multiplying the rectangular term. We, subsequently, apply cooling and the gradient flow using the Wilson, the Symanzik tree-level improved, and the Iwasaki gauge actions to configurations produced with N-f = 2 + 1 + 1 twisted mass fermions. We compute the topological charge, its distribution, and the correlators between cooling and gradient flow at three values of the lattice spacing demonstrating that the perturbative rescaling t similar or equal to n(c)/(3 - 15c(1)) leads to equivalent results.
引用
收藏
页数:17
相关论文
共 38 条
  • [21] Frezzotti R, 2001, J HIGH ENERGY PHYS
  • [22] The topological susceptibility and fπ from lattice QCD
    Hart, A
    Teper, M
    [J]. PHYSICS LETTERS B, 2001, 523 (3-4) : 280 - 292
  • [23] Discretization effects in the topological susceptibility in lattice QCD
    Hart, A
    [J]. PHYSICAL REVIEW D, 2004, 69 (07): : 6
  • [24] Flavor symmetry and the static potential with hypercubic blocking
    Hasenfratz, A
    Knechtli, F
    [J]. PHYSICAL REVIEW D, 2001, 64 (03)
  • [25] STABILITY OF INSTANTONS ON THE LATTICE AND THE RENORMALIZED TRAJECTORY
    ITOH, S
    IWASAKI, Y
    YOSHIE, T
    [J]. PHYSICS LETTERS B, 1984, 147 (1-3) : 141 - 144
  • [26] Scaling in SU(3) pure gauge theory with a renormalization-group-improved action
    Iwasaki, Y
    Kanaya, K
    Kaneko, T
    Yoshie, T
    [J]. PHYSICAL REVIEW D, 1997, 56 (01) : 151 - 160
  • [27] Perturbative analysis of the gradient flow in non-abelian gauge theories
    Luescher, Martin
    Weisz, Peter
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2011, (02):
  • [28] Universality of the topological susceptibility in the SU(3) gauge theory
    Luescher, Martin
    Palombi, Filippo
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (09):
  • [29] Luscher M., 2014, P SCI LATTICE2013, DOI 10.22323/1.187.0016[arXiv:1308.5598[heplat]]
  • [30] Over-improved stout-link smearing
    Moran, Peter J.
    Leinweber, Derek B.
    [J]. PHYSICAL REVIEW D, 2008, 77 (09):