Some results on generalized Calabi-Yau manifolds

被引:0
作者
De Bartolomeis, Paolo
Tomassini, Adriano
机构
[1] Univ Florence, Dipartimento Matemat Applicata G Sansone, I-50139 Florence, Italy
[2] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
关键词
symplectic; almost complex; Maslov class; Lagrangian;
D O I
10.1142/S0219887806001508
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider generalized Calabi-Yau manifolds and we give a formula for the Maslov class of a Lagrangian submanifold of a generalized Calabi-Yau manifold. In particular, we characterize the Lagrangian submanifolds with vanishing Maslov class. In the 6-dimensional case, we refine our definition. Finally, we construct some examples.
引用
收藏
页码:1273 / 1292
页数:20
相关论文
共 28 条
[1]  
ABBENA E, 1984, B UNIONE MAT ITAL, V3A, P383
[2]  
Audin M., 1994, PROGR MATH, V117
[3]   KAHLER AND SYMPLECTIC STRUCTURES ON NILMANIFOLDS [J].
BENSON, C ;
GORDON, CS .
TOPOLOGY, 1988, 27 (04) :513-518
[4]  
BRYLINSKI JL, 1988, J DIFFER GEOM, V28, P93
[5]  
CHIOSSI S, 2002, DIFFERENTIAL GEOMETR, P115
[6]   SYMPLECTIC-MANIFOLDS WITH NO KAHLER STRUCTURE [J].
CORDERO, LA ;
FERNANDEZ, M ;
GRAY, A .
TOPOLOGY, 1986, 25 (03) :375-380
[7]  
DAZORD P, 1981, ANN SCI ECOLE NORM S, V14, P465
[8]   On formality of some symplectic manifolds [J].
de Bartolomeis, P ;
Tomassini, A .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2001, 2001 (24) :1287-1314
[9]   On solvable generalized Calabi-Yau manifolds [J].
De Bartolomeis, Paolo ;
Tomassini, Adriano .
ANNALES DE L INSTITUT FOURIER, 2006, 56 (05) :1281-1296
[10]   On the Maslov index of Lagrangian submanifolds of generalized Calabi-Yau manifolds [J].
De Bartolomeis, Paolo ;
Tomassini, Adriano .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2006, 17 (08) :921-947