Comparison of electrorheological performance between urea-coated and graphene oxide-wrapped core-shell structured amorphous TiO2 nanoparticles

被引:9
作者
Dong, Xufeng [1 ]
Huo, Shuang [1 ]
Qi, Min [1 ]
机构
[1] Dalian Univ Technol, Sch Mat Sci & Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金; 对外科技合作项目(国际科技项目);
关键词
electrorheological fluids; core-shell; polar molecule; graphene oxide; yield stress; YIELD-STRESS; FLUIDS; FABRICATION; SUSPENSIONS;
D O I
10.1088/0964-1726/25/1/015033
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Polar molecules and graphene oxide (GO) have been used as the shell materials to prepare core-shell structured particles with enhanced electrorheological (ER) properties. Nevertheless, few studies compared the ER performance and stability of the suspensions with the two kinds of shell. In this study, urea and GO are used as the shell materials to prepare TiO2/urea and TiO2/GO core-shell particles-based ER fluids, respectively. Particle characterization results indicate the two kinds of core-shell structured particles present little change in size, morphology and crystal structure compared with the bare amorphous TiO2. Some polar groups are distributed on the surface of the two kinds of core-shell structured particles, which is responsible for their improved ER performance with respect to the bare TiO2 particles. The TiO2/GO particles-based ER fluid presents higher yield stress, lower leakage current density, better sedimentation stability but lower ER efficiency than the TiO2/urea particles-based sample. The larger surface area, stronger connection with the bare TiO2 particles, and larger number of polar groups of the GO-coating is the possible reason for the different properties of TiO2/GO particles-based ER fluid compared with the TiO2/urea particles-based sample.
引用
收藏
页数:10
相关论文
共 31 条
[1]   A dehydration and stabilizer-free approach to production of stable water dispersions of graphene nanosheets [J].
Chen, Jin-Long ;
Yan, Xiu-Ping .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (21) :4328-4332
[2]   Preparation of uniform titania microspheres with good electrorheological performance and their size effect [J].
Cheng, Yuchuan ;
Guo, Jianjun ;
Liu, Xuehui ;
Sun, Aihua ;
Xu, Gaojie ;
Cui, Ping .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (13) :5051-5056
[3]   Shear stress analysis of a semiconducting polymer based electrorheological fluid system [J].
Cho, MS ;
Choi, HJ ;
Jhon, MS .
POLYMER, 2005, 46 (25) :11484-11488
[4]   A yield stress scaling function for electrorheological fluids [J].
Choi, HJ ;
Cho, MS ;
Kim, JW ;
Kim, CA ;
Jhon, MS .
APPLIED PHYSICS LETTERS, 2001, 78 (24) :3806-3808
[5]   POLARIZATION FORCES AND CONDUCTIVITY EFFECTS IN ELECTRORHEOLOGICAL FLUIDS [J].
DAVIS, LC .
JOURNAL OF APPLIED PHYSICS, 1992, 72 (04) :1334-1340
[6]   Titanium glycerolate-based electrorheological fluids with stable properties [J].
Dong, Xufeng ;
Zhao, Hong ;
Qi, Min ;
Tao, Wanyong .
MATERIALS RESEARCH EXPRESS, 2014, 1 (02)
[7]   ELECTRORHEOLOGICAL FLUIDS [J].
HALSEY, TC .
SCIENCE, 1992, 258 (5083) :761-766
[8]   Synthesis and electrorheological properties of polar molecule-dominated TiO 2 particles with high yield stress [J].
Liu, Xuehui ;
Guo, Jianjun ;
Cheng, Yuchuan ;
Xu, Gaojie ;
Li, Yong ;
Cui, Ping .
RHEOLOGICA ACTA, 2010, 49 (08) :837-843
[9]   Fabrication of ammonium persulfate coated silica microsphere via chemical grafting and its electrorheology [J].
Liu, Ying Dan ;
Quan, Xue-Mei ;
Lee, Bo Mi ;
Kim, In Gu ;
Choi, Hyoung Jin .
JOURNAL OF MATERIALS SCIENCE, 2014, 49 (06) :2618-2623
[10]   Structure and dynamics of electrorheological fluids [J].
Martin, JE ;
Odinek, J ;
Halsey, TC ;
Kamien, R .
PHYSICAL REVIEW E, 1998, 57 (01) :756-775