SUBQUADRATIC-TIME ALGORITHMS FOR NORMAL BASES

被引:1
作者
Giesbrecht, Mark [1 ]
Jamshidpey, Armin [1 ]
Schost, Eric [1 ]
机构
[1] Univ Waterloo, Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
关键词
Normal bases; Galois groups; Polycyclic groups; Metacyclic groups; Fast algorithms;
D O I
10.1007/s00037-020-00204-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For any finite Galois field extension K/F, with Galois group G = Gal(K/F), there exists an element alpha is an element of K whose orbit G center dot alpha forms an F-basis of K. Such an alpha is called a normal element, and G center dot alpha is a normal basis. We introduce a probabilistic algorithm for testing whether a given alpha is an element of K is normal, when G is either a finite abelian or a metacyclic group. The algorithm is based on the fact that deciding whether alpha is normal can be reduced to deciding whether Sigma(g is an element of G)g(alpha)g is an element of K[G] is invertible; it requires a slightly subquadratic number of operations. Once we know that alpha is normal, we show how to perform conversions between the power basis of K/F and the normal basis with the same asymptotic cost.
引用
收藏
页数:34
相关论文
共 26 条
[1]  
[Anonymous], 1996, EFFICIENT ALGORITHMS
[2]  
[Anonymous], 2014, P 39 INT S SYMB ALG
[3]   Fast computation of special resultants [J].
Bostan, A ;
Flajolet, P ;
Salvy, B ;
Schost, É .
JOURNAL OF SYMBOLIC COMPUTATION, 2006, 41 (01) :1-29
[4]   ON MATRICES WITH DISPLACEMENT STRUCTURE: GENERALIZED OPERATORS AND FASTER ALGORITHMS [J].
Bostan, A. ;
Jeannerod, C. -P. ;
Mouilleron, C. ;
Schost, E. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2017, 38 (03) :733-775
[5]   FAST ALGORITHMS FOR MANIPULATING FORMAL POWER-SERIES [J].
BRENT, RP ;
KUNG, HT .
JOURNAL OF THE ACM, 1978, 25 (04) :581-595
[6]  
Canny J. F., 1989, Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, ISSAC '89, P121, DOI 10.1145/74540.74556
[7]  
Charpin P, 1994, P EUROCODE 94
[8]   Generating fast Fourier transforms of solvable groups [J].
Clausen, A ;
Müller, M .
JOURNAL OF SYMBOLIC COMPUTATION, 2004, 37 (02) :137-156
[9]  
Curtis C, 1988, REPRESENTATION THEOR, P689
[10]  
Dahan Xavier, 2006, P TRANSGR COMP 2006