Unbounded asymptotic equivalences of operator nets with applications

被引:3
作者
Erkursun-Ozcan, Nazife [1 ]
Gezer, Niyazi Anil [2 ]
机构
[1] Hacettepe Univ, Dept Math, TR-06800 Ankara, Turkey
[2] Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkey
关键词
Unbounded convergence; Asymptotic equivalence; Operator nets; ORDER CONVERGENCE; BEHAVIOR;
D O I
10.1007/s11117-018-0640-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Present paper deals with applications of asymptotic equivalence relations on operator nets. These relations are defined via unbounded convergences on vector lattices. Given two convergences c and delta on a vector lattice, we study delta-asymptotic properties of operator nets formed by c-continuous operators. Asymptotic equivalences are known to be useful and extremely important tools to study infinite behaviors of strongly convergent operator nets and continuous semigroups. After giving a general theory, paper focuses on delta- martingale and delta-Lotz-Rabiger nets.
引用
收藏
页码:829 / 851
页数:23
相关论文
共 24 条
[1]  
ABRAMOVICH YA, 2002, INVITATION OPERATOR
[2]  
Aliprantis C. D., 2006, POSITIVE OPERATORS
[3]  
[Anonymous], 2002, Convergence structures and applications to functional analysis
[4]  
[Anonymous], VLADIKAVKAZ MAT ZH
[5]  
[Дабурасад Юсеф Атеф Мохаммед Dabboorasad Yousef Atef Mohammed], 2018, [Владикавказский математический журнал, Vladikavkazskii matematicheskii zhurnal], V20, P49, DOI 10.23671/VNC.2018.2.14720
[6]   Unbounded norm convergence in Banach lattices [J].
Deng, Y. ;
O'Brien, M. ;
Troitsky, V. G. .
POSITIVITY, 2017, 21 (03) :963-974
[7]   Asymptotic Behavior of Lotz-Rabiger and Martingale Nets [J].
Emel'yanov, E. Yu. .
SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (05) :810-817
[8]  
Emel'yanov E.Yu, 2007, NONSPECTRAL ASYMPTOT, V173
[9]   Lotz-Rabiger's nets of Markov operators in L1-spaces [J].
Emel'yanov, Eduard ;
Erkursun, Nazife .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (02) :777-783
[10]   On quasi-compactness of operator nets on Banach spaces [J].
Emel'yanov, Eduard Yu. .
STUDIA MATHEMATICA, 2011, 203 (02) :163-170