Coalescence of air bubbles at air-water interface

被引:52
|
作者
Ghosh, P [1 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Gauhati 781039, India
来源
关键词
air-water interface; bubble; electrolyte; water-hydrocarbon interface; interfacial force; surfactant; surface diffusion; stochastic modelling;
D O I
10.1205/0263876041596715
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The rest time of air bubbles at flat air water and water-organic interfaces is studied in the present work. Effects of cationic and anionic surfactants, alcohol, salts and bubble-size on rest time are investigated. Wide distributions in rest times are observed in all the systems, which establishes the stochastic nature of the process. The stochastic model of Ghosh and Juvekar (2002; Chem Eng Res Des 80: 715-728) is used to fit the bubble rest time distributions. The results show that the magnitude of the rest time is determined by the strength of the interfacial repulsive force and the magnitude of surface diffusivity of the surfactant molecules. Entanglement of surfactants by hydrophobic interaction is believed to be a major factor behind the high rest time in many of the systems studied, apart from the repulsive electrostatic double layer, hydration and steric forces. The nature of the repulsion differs from system to system depending on the type of the adsorbed species. The work provides further support to the viewpoint (Ghosh and Juvekar, 2002) that the hydrodynamic drainage of the thin liquid film trapped between the bubble and the flat interface is complete once the bubble comes to a rest on the interface and the lubrication force plays a negligible role in supporting the weight of the bubble.
引用
收藏
页码:849 / 854
页数:6
相关论文
共 50 条
  • [41] Catanionic surfactant films at the air-water interface
    Wang, Yujie
    Pereira, Carlos M.
    Marques, Eduardo F.
    Brito, Rodrigo O.
    Ferreira, E. S.
    Silva, F.
    THIN SOLID FILMS, 2006, 515 (04) : 2031 - 2037
  • [42] AIR-WATER INTERFACE Faster chemistry at surfaces
    Walker, Robert A.
    NATURE CHEMISTRY, 2021, 13 (04) : 296 - 297
  • [43] ENERGETICS OF SURFACTANT ADSORPTION AT AIR-WATER INTERFACE
    MANKOWICH, AM
    JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 1966, 43 (11) : 615 - +
  • [44] Orientation of silk III at the air-water interface
    Valluzzi, R
    Gido, SP
    Muller, W
    Kaplan, DL
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 1999, 24 (2-3) : 237 - 242
  • [45] Peptide bond formation at the air-water interface
    Singh, J
    Oliver, JS
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 213 : 58 - ORGN
  • [46] Ion pair particles at the air-water interface
    Kumar, Manoj
    Francisco, Joseph S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (47) : 12401 - 12406
  • [47] Transport across a turbulent air-water interface
    Law, CNS
    Khoo, BC
    AICHE JOURNAL, 2002, 48 (09) : 1856 - 1868
  • [48] Adsorption kinetics of diazinon at the air-water interface
    Lin, SY
    Lin, LW
    Chang, HC
    Ku, Y
    JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (41): : 16678 - 16684
  • [49] Modelling the refractive index of the air-water interface
    Longford, Frank
    Essex, Jonathan
    Skylaris, Chris-Kriton
    Frey, Jeremy
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [50] Dynamics of Bilayer Interactions at the Air-Water Interface
    Martynowycz, Michael
    Ivankin, Andrey
    Gidalevitz, David
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 512A - 512A