A one-dimensional version of the random interlacements

被引:2
作者
Camargo, Darcy [1 ]
Popov, Serguei [1 ]
机构
[1] Univ Estadual Campinas, UNICAMP, Dept Stat, Inst Math Stat & Sci Computat, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Random interlacements; Local times; Occupation times; Simple random walk; Doob's h-transform; RANDOM-WALKS; VACANT SET; PERCOLATION;
D O I
10.1016/j.spa.2017.10.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We base ourselves on the construction of the two-dimensional random interlacements (Comets et al., 2016) to define the one-dimensional version of the process. For this, we consider simple random walks conditioned on never hitting the origin. We compare this process to the conditional random walk on the ring graph. Our results are the convergence of the vacant set on the ring graph to the vacant set of one-dimensional random interlacements, a central limit theorem for the interlacements' local time and the convergence in law of the local times of the conditional walk on the ring graph to the interlacements' local times. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:2750 / 2778
页数:29
相关论文
共 14 条
[1]   RANDOM WALKS ON TORUS AND RANDOM INTERLACEMENTS: MACROSCOPIC COUPLING AND PHASE TRANSITION [J].
Cerny, Jeri ;
Teixeira, Augusto .
ANNALS OF APPLIED PROBABILITY, 2016, 26 (05) :2883-2914
[2]   Two-Dimensional Random Interlacements and Late Points for Random Walks [J].
Comets, Francis ;
Popov, Serguei ;
Vachkovskaia, Marina .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 343 (01) :129-164
[3]  
DREWITZ A, 2014, INTRO RANDOM INTERLA
[4]  
erny J., 2012, BOL SOC BRAS MAT, V23, P1
[5]  
Feller W., 1968, INTRO PROBABILITY TH
[6]  
Lawler G.F., 2010, Random Walk: A Modern Introduction
[7]   Large deviations for occupation time profiles of random interlacements [J].
Li, Xinyi ;
Sznitman, Alain-Sol .
PROBABILITY THEORY AND RELATED FIELDS, 2015, 161 (1-2) :309-350
[8]  
Resnick S. I., 2013, A probability path
[9]   An isomorphism theorem for random interlacements [J].
Sznitman, Alain-Sol .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 :1-9
[10]  
Sznitman AS, 2010, ANN MATH, V171, P2039