共 48 条
Water dispersible electrically conductive poly(3,4-ethylenedioxythiophene) nanospindles by liquid crystalline template assisted polymerization
被引:21
作者:
Devaki, Sudha J.
[1
]
Sadanandhan, Neethu K.
[1
]
Sasi, Renjith
[1
]
Adler, Hans-Juergen P.
[3
]
Pich, Andrij
[2
]
机构:
[1] CSIR, Natl Inst Interdisciplinary Sci & Technol, Chem Sci & Technol Div, Thiruvananthapuram 695019, Kerala, India
[2] Rhein Westfal TH Aachen, DWI Leibniz Inst Interact Mat Funct & Interact Po, D-52056 Aachen, Germany
[3] Univ Technol, Dept Macromol Chem & Text Chem, Dresden, Germany
关键词:
POLYMERS;
3,4-ETHYLENEDIOXYTHIOPHENE;
NANOPARTICLES;
NANOFIBERS;
DEPOSITION;
ELECTRODE;
FILMS;
ACID;
D O I:
10.1039/c4tc01010h
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
In this work, we demonstrate an inimitable liquid crystalline template strategy for the preparation of water dispersible electrically conducting poly(3,4-ethylenedioxythiophene) nanospindles (PEDOTSs). PEDOTSs were formed during the polymerization of the spindle shaped liquid crystalline phase of "EDOT-PDPSA" which was formed by the specific interactions of 3,4-ethylenedioxythiophene (EDOT) with 3-pentadecyl phenol-4-sulphonic acid (PDPSA). Liquid crystalline phases were characterized by Polarized Light Microscopic (PLM) analyses, rheology and XRD. Morphology and solid state ordering of conducting nanospindles were characterized by SEM, TEM and XRD. PEDOTSs exhibited an electrical conductivity of similar to 2.79 S cm(-1) and a good thermal stability (similar to 300 degrees C), which suggests their applicability in fabricating high temperature electronic devices. Furthermore, electrochemical studies of PEDOTS modified glassy carbon electrodes (GCEs) showed an oxidation peak of ascorbic acid at a lower potential of 0.046 V with a peak current about 10 times (91.68 mu A) higher than that of the bare GCE with excellent electrode stability, proposing that it can be used as a steady electrode for the electro-catalytic oxidation of similar molecules.
引用
收藏
页码:6991 / 7000
页数:10
相关论文