Kinetics of ribosomal pausing during programmed-1 translational frameshifting

被引:86
|
作者
Lopinski, JD
Dinman, JD
Bruenn, JA [1 ]
机构
[1] SUNY Buffalo, Dept Biol Sci, Buffalo, NY 14260 USA
[2] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Mol Genet & Microbiol, Grad Program Mol Biosci Rutgers UMDNJ, Piscataway, NJ 08854 USA
[3] Canc Inst New Jersey, Piscataway, NJ 08854 USA
[4] Hauptman Woodward Med Res Inst, Buffalo, NY 14203 USA
关键词
D O I
10.1128/MCB.20.4.1095-1103.2000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the Saccharomyces cerevisiae double-stranded RNA virus, programmed -1 ribosomal frameshifting is responsible for translation of the second open reading frame of the essential viral RNA. A typical slippery site and downstream pseudoknot are necessary for this frameshifting event, and previous work has demonstrated that ribosomes pause over the slippery site. The translational intermediate associated with a ribosome paused at this position is detected, and, using in vitro translation and quantitative heelprinting, the rates of synthesis, the ribosomal pause time, the proportion of ribosomes paused at the slippery site, and the fraction of paused ribosomes that frameshift are estimated. About 10% of ribosomes pause at the slippery site in vitro, and some 60% of these continue in the -1 frame. Ribosomes that continue in the -1 frame pause about 10 times longer than it takes to complete a peptide bond in vitro. Altering the rate of translational initiation alters the rate of frameshifting in vivo. Our in vitro and in vivo experiments can best be interpreted to mean that there are three methods by which ribosomes pass the frameshift site, only one of which results in frameshifting.
引用
收藏
页码:1095 / 1103
页数:9
相关论文
共 50 条
  • [31] Mechanisms and implications of programmed translational frameshifting
    Dinman, Jonathan D.
    WILEY INTERDISCIPLINARY REVIEWS-RNA, 2012, 3 (05) : 661 - 673
  • [32] A rapid, inexpensive yeast-based dual-fluorescence assay of programmed-1 ribosomal frameshifting for high-throughput screening
    Rakauskaite, Rasa
    Liao, Pei-Yu
    Rhodin, Michael H. J.
    Lee, Kelvin
    Dinman, Jonathan D.
    NUCLEIC ACIDS RESEARCH, 2011, 39 (14) : e97
  • [33] An 'integrated model' of programmed ribosomal frameshifting
    Harger, JW
    Meskauskas, A
    Dinman, JD
    TRENDS IN BIOCHEMICAL SCIENCES, 2002, 27 (09) : 448 - 454
  • [34] Structural basis of SARS-CoV-2 translational shutdown and programmed ribosomal frameshifting
    Ban, Nenad
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C241 - C241
  • [35] High frequency of +1 programmed ribosomal frameshifting in Euplotes octocarinatus
    Ruanlin Wang
    Jie Xiong
    Wei Wang
    Wei Miao
    Aihua Liang
    Scientific Reports, 6
  • [36] The Interplay of mRNA Stimulatory Signals Required for AUU-Mediated Initiation and Programmed-1 Ribosomal Frameshifting in Decoding of Transposable Element IS911
    Prere, Marie-Francoise
    Canal, Isabelle
    Wills, Norma M.
    Atkins, John F.
    Fayet, Olivier
    JOURNAL OF BACTERIOLOGY, 2011, 193 (11) : 2735 - 2744
  • [37] A stochastic model of translation with-1 programmed ribosomal frameshifting
    Bailey, Brenae L.
    Visscher, Koen
    Watkins, Joseph
    PHYSICAL BIOLOGY, 2014, 11 (01)
  • [38] -1 Programmed Ribosomal Frameshifting as a Force-Dependent Process
    Visscher, Koen
    NANOTECHNOLOGY TOOLS FOR THE STUDY OF RNA, 2016, 139 : 45 - 72
  • [39] Programmed-1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding
    Ritchie, Dustin B.
    Foster, Daniel A. N.
    Woodside, Michael T.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (40) : 16167 - 16172
  • [40] Translational misreading: Mutations in translation elongation factor 1 alpha differentially affect programmed ribosomal frameshifting and drug sensitivity
    Dinman, JD
    Kinzy, TG
    RNA, 1997, 3 (08) : 870 - 881