Kinetics of ribosomal pausing during programmed-1 translational frameshifting

被引:86
|
作者
Lopinski, JD
Dinman, JD
Bruenn, JA [1 ]
机构
[1] SUNY Buffalo, Dept Biol Sci, Buffalo, NY 14260 USA
[2] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Mol Genet & Microbiol, Grad Program Mol Biosci Rutgers UMDNJ, Piscataway, NJ 08854 USA
[3] Canc Inst New Jersey, Piscataway, NJ 08854 USA
[4] Hauptman Woodward Med Res Inst, Buffalo, NY 14203 USA
关键词
D O I
10.1128/MCB.20.4.1095-1103.2000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the Saccharomyces cerevisiae double-stranded RNA virus, programmed -1 ribosomal frameshifting is responsible for translation of the second open reading frame of the essential viral RNA. A typical slippery site and downstream pseudoknot are necessary for this frameshifting event, and previous work has demonstrated that ribosomes pause over the slippery site. The translational intermediate associated with a ribosome paused at this position is detected, and, using in vitro translation and quantitative heelprinting, the rates of synthesis, the ribosomal pause time, the proportion of ribosomes paused at the slippery site, and the fraction of paused ribosomes that frameshift are estimated. About 10% of ribosomes pause at the slippery site in vitro, and some 60% of these continue in the -1 frame. Ribosomes that continue in the -1 frame pause about 10 times longer than it takes to complete a peptide bond in vitro. Altering the rate of translational initiation alters the rate of frameshifting in vivo. Our in vitro and in vivo experiments can best be interpreted to mean that there are three methods by which ribosomes pass the frameshift site, only one of which results in frameshifting.
引用
收藏
页码:1095 / 1103
页数:9
相关论文
共 50 条
  • [21] Thermodynamic control of −1 programmed ribosomal frameshifting
    Lars V. Bock
    Neva Caliskan
    Natalia Korniy
    Frank Peske
    Marina V. Rodnina
    Helmut Grubmüller
    Nature Communications, 10
  • [22] Slip-sliding the frame: Programmed-1 frameshifting on eukaryotic transcripts
    Wilson, GM
    Brewer, G
    GENOME RESEARCH, 1999, 9 (05) : 393 - 394
  • [23] Decreased peptidyltransferase activity correlates with increased programmed-1 ribosomal frameshifting and viral maintenance defects in the yeast Saccharomyces cerevisiae
    Meskauskas, A
    Harger, JW
    Jacobs, KLM
    Dinman, JD
    RNA, 2003, 9 (08) : 982 - 992
  • [24] Geneticin shows selective antiviral activity against SARS-CoV-2 by interfering with programmed-1 ribosomal frameshifting
    Varricchio, Carmine
    Mathez, Gregory
    Pillonel, Trestan
    Bertelli, Claire
    Kaiser, Laurent
    Tapparel, Caroline
    Brancale, Andrea
    Cagno, Valeria
    ANTIVIRAL RESEARCH, 2022, 208
  • [25] RiboFrShiftFinder: Prediction of programmed-1 ribosomal frameshift sites
    Yu, W
    Kraemer, ET
    Taylor, EW
    FASEB JOURNAL, 2000, 14 (04): : A328 - A328
  • [26] Nonsense-mediated decay mutants do not affect programmed-1 frameshifting
    Bidou, L
    Stahl, G
    Hatin, I
    Namy, O
    Rousset, JP
    Farabaugh, PJ
    RNA, 2000, 6 (07) : 952 - 961
  • [27] Regulation of Programmed Ribosomal Frameshifting by Co-Translational Refolding RNA Hairpins
    Cho, Che-Pei
    Lin, Szu-Chieh
    Chou, Ming-Yuan
    Hsu, Hsiu-Ting
    Chang, Kung-Yao
    PLOS ONE, 2013, 8 (04):
  • [28] Thermodynamic control of-1 programmed ribosomal frameshifting
    Bock, Lars V.
    Caliskan, Neva
    Korniy, Natalia
    Peske, Frank
    Rodnina, Marina V.
    Grubmueller, Helmut
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [29] Spacer-length dependence of programmed-1 or-2 ribosomal frameshifting on a U6A heptamer supports a role for messenger RNA (mRNA) tension in frameshifting
    Lin, Zhaoru
    Gilbert, Robert J. C.
    Brierley, Ian
    NUCLEIC ACIDS RESEARCH, 2012, 40 (17) : 8674 - 8689
  • [30] Kinetics and Thermodynamics of-1 Ribosomal Frameshifting
    Bock, Lars V.
    Caliskan, Neva
    Peng, Bee-Zen
    Korniy, Natalia
    Belardinelli, Riccardo
    Peske, Frank
    Rodnina, Marina V.
    Grubmueller, Helmut
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 546A - 547A