Numerical solution of fractional Sturm-Liouville equation in integral form

被引:43
作者
Blaszczyk, Tomasz [1 ]
Ciesielski, Mariusz [2 ]
机构
[1] Czestochowa Tech Univ, Inst Math, PL-42201 Czestochowa, Poland
[2] Czestochowa Tech Univ, Inst Comp & Informat Sci, PL-42201 Czestochowa, Poland
关键词
fractional Euler-Lagrange equation; fractional Sturm-Liouville equation; fractional integral equation; numerical solution; EULER-LAGRANGE EQUATIONS; CALCULUS; DERIVATIVES; FORMULATION; MECHANICS; MODELS;
D O I
10.2478/s13540-014-0170-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a fractional differential equation of the Euler-Lagrange/Sturm-Liouville type is considered. The fractional equation with derivatives of order alpha a (0, 1] in the finite time interval is transformed to the integral form. Next the numerical scheme is presented. In the final part of this paper examples of numerical solutions of this equation are shown. The convergence of the proposed method on the basis of numerical results is also discussed.
引用
收藏
页码:307 / 320
页数:14
相关论文
共 39 条
[21]   Modeling the transition between stable and unstable operation while emptying a silo [J].
Leszczynski, J. S. ;
Blaszczyk, T. .
GRANULAR MATTER, 2011, 13 (04) :429-438
[22]  
Leszczynski J.S., 2011, INTRO FRACTIONAL MEC
[23]   A numerical technique for solving a class of fractional variational problems [J].
Lotfi, A. ;
Yousefi, S. A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) :633-643
[24]  
Magin Richard L., 2004, Critical Reviews in Biomedical Engineering, V32, P1, DOI 10.1615/CritRevBiomedEng.v32.10
[25]  
Malinowska A. B., 2012, Introduction to the fractional calculus of variations
[26]   Towards a combined fractional mechanics and quantization [J].
Malinowska, Agnieszka B. ;
Torres, Delfim F. M. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (03) :407-417
[27]   FRACTIONAL CALCULUS OF VARIATIONS FOR A COMBINED CAPUTO DERIVATIVE [J].
Malinowska, Agnieszka B. ;
Torres, Delfim F. M. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (04) :523-537
[28]   Green's theorem for generalized fractional derivatives [J].
Odzijewicz, Tatiana ;
Malinowska, Agnieszka B. ;
Torres, Delfim F. M. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) :64-75
[29]   Fractional variational calculus with classical and combined Caputo derivatives [J].
Odzijewicz, Tatiana ;
Malinowska, Agnieszka B. ;
Torres, Delfim F. M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) :1507-1515
[30]  
Oldham K, 1974, The Fractional Calculus