Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion

被引:106
作者
Lankeit, Johannes [1 ]
机构
[1] Univ Paderborn, Inst Math, Warburger Str 100, D-33098 Paderborn, Germany
关键词
Keller-Segel; Chemotaxis; Nonlinear diffusion; Global existence; Boundedness; KELLER-SEGEL SYSTEM; TRAVELING-WAVES; WELL-POSEDNESS; USERS GUIDE; EQUATIONS; STABILITY; BACTERIA;
D O I
10.1016/j.jde.2016.12.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show the existence of locally bounded global solutions to the chemotaxis system {u(t) = del.((u)del u) - del.(u/v del v) in Omega x(0, infinity) v(t) = Delta v - uv in Omega x(0, infinity) partial derivative v(u) = partial derivative(v)v = 0 in Omega x(0, infinity) u(., 0) = u(0,) v(., 0) = v(0) in Omega in smooth bounded domains Omega subset of R-N, N >= 2, for D(u) >= delta Um-1 with some delta > 0, provided that m > 1+ N/4. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:4052 / 4084
页数:33
相关论文
共 45 条
[1]   CHEMOTAXIS IN BACTERIA [J].
ADLER, J .
SCIENCE, 1966, 153 (3737) :708-&
[2]   A METHOD FOR MEASURING MOTILITY OF BACTERIA AND FOR COMPARING RANDOM AND NON-RANDOM MOTILITY [J].
ADLER, J ;
DAHL, MM .
JOURNAL OF GENERAL MICROBIOLOGY, 1967, 46 :161-&
[3]  
[Anonymous], 1986, Annali di Matematica Pura ed Applicata, DOI [DOI 10.1007/BF01762360.MR916688, DOI 10.1007/BF01762360]
[4]  
[Anonymous], 1996, 2 ORDER PARABOLIC DI, DOI DOI 10.1142/3302
[5]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[6]  
Biler P., 1999, ADV MATH SCI APPL, V9, P347
[7]  
Friedman A., 1969, PARTIAL DIFFERENTIAL
[8]   Boundedness in a fully parabolic chemotaxis system with singular sensitivity [J].
Fujie, Kentarou .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) :675-684
[9]   ABSTRACT LP ESTIMATES FOR THE CAUCHY-PROBLEM WITH APPLICATIONS TO THE NAVIER-STOKES EQUATIONS IN EXTERIOR DOMAINS [J].
GIGA, Y ;
SOHR, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 102 (01) :72-94
[10]  
Hieber M, 1997, COMMUN PART DIFF EQ, V22, P1647