Understanding the liver under heat stress with statistical learning: an integrated metabolomics and transcriptomics computational approach

被引:19
作者
Hubbard, Allen H. [1 ]
Zhang, Xiaoke [2 ]
Jastrebski, Sara [3 ]
Singh, Abhyudai [4 ]
Schmidt, Carl [3 ]
机构
[1] Univ Delaware, Bioinformat & Syst Biol, Newark, DE 19716 USA
[2] George Washington Univ, Stat, Washington, DC USA
[3] Univ Delaware, Anim & Food Sci, Newark, DE USA
[4] Univ Delaware, Elect Engn & Comp Sci, Newark, DE USA
基金
美国农业部;
关键词
High throughput sequencing; Transcriptome; Metabolome; MEMBRANES;
D O I
10.1186/s12864-019-5823-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundWe present results from a computational analysis developed to integrate transcriptome and metabolomic data in order to explore the heat stress response in the liver of the modern broiler chicken. Heat stress is a significant cause of productivity loss in the poultry industry, both in terms of increased livestock morbidity and its negative influence on average feed efficiency. This study focuses on the liver because it is an important regulator of metabolism, controlling many of the physiological processes impacted by prolonged heat stress. Using statistical learning methods, we identify genes and metabolites that may regulate the heat stress response in the liver and adaptations required to acclimate to prolonged heat stress.ResultsWe describe how disparate systems such as sugar, lipid and amino acid metabolism, are coordinated during the heat stress response.ConclusionsOur findings provide more detailed context for genomic studies and generates hypotheses about dietary interventions that can mitigate the negative influence of heat stress on the poultry industry.
引用
收藏
页数:16
相关论文
共 23 条
[1]   Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals [J].
Akbarian, Abdollah ;
Michiels, Joris ;
Degroote, Jeroen ;
Majdeddin, Maryam ;
Golian, Abolghasem ;
De Smet, Stefaan .
JOURNAL OF ANIMAL SCIENCE AND BIOTECHNOLOGY, 2016, 7
[2]   The hyperfluidization of mammalian cell membranes acts as a signal to initiate the heat shock protein response [J].
Balogh, G ;
Horváth, I ;
Nagy, E ;
Hoyk, Z ;
Benko, S ;
Bensaude, O ;
Vígh, L .
FEBS JOURNAL, 2005, 272 (23) :6077-6086
[3]  
Balogh G, 2013, KEY ROLE LIPIDS HEAT
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   Membrane lipid perturbation modifies the set point of the temperature of heat shock response in yeast [J].
Carratu, L ;
Franceschelli, S ;
Pardini, CL ;
Kobayashi, GS ;
Horvath, I ;
Vigh, L ;
Maresca, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (09) :3870-3875
[6]   Calcium and oxidative stress: from cell signaling to cell death [J].
Ermak, G ;
Davies, KJA .
MOLECULAR IMMUNOLOGY, 2002, 38 (10) :713-721
[7]   Integrated, Nontargeted Ultrahigh Performance Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry Platform for the Identification and Relative Quantification of the Small-Molecule Complement of Biological Systems [J].
Evans, Anne M. ;
DeHaven, Corey D. ;
Barrett, Tom ;
Mitchell, Matt ;
Milgram, Eric .
ANALYTICAL CHEMISTRY, 2009, 81 (16) :6656-6667
[8]   Genetics Meets Metabolomics: A Genome-Wide Association Study of Metabolite Profiles in Human Serum [J].
Gieger, Christian ;
Geistlinger, Ludwig ;
Altmaier, Elisabeth ;
de Angelis, Martin Hrabe ;
Kronenberg, Florian ;
Meitinger, Thomas ;
Mewes, Hans-Werner ;
Wichmann, H. -Erich ;
Weinberger, Klaus M. ;
Adamski, Jerzy ;
Illig, Thomas ;
Suhre, Karsten .
PLOS GENETICS, 2008, 4 (11)
[9]   The Plasma Membrane as First Responder to Heat Stress [J].
Hofmann, Nancy R. .
PLANT CELL, 2009, 21 (09) :2544-2544
[10]   Identifying mechanisms of regulation to model carbon flux during heat stress and generate testable hypotheses [J].
Hubbard, Allen H. ;
Zhang, Xiaoke ;
Jastrebski, Sara ;
Lamont, Susan J. ;
Singh, Abhyudai ;
Schmidt, Carl J. .
PLOS ONE, 2018, 13 (10)