Geometric uncertainty relation for mixed quantum states

被引:11
作者
Andersson, Ole [1 ]
Heydari, Hoshang [1 ]
机构
[1] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
STATISTICAL-MECHANICS;
D O I
10.1063/1.4871548
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we use symplectic reduction in an Uhlmann bundle to construct a principal fiber bundle over a general space of unitarily equivalent mixed quantum states. The bundle, which generalizes the Hopf bundle for pure states, gives in a canonical way rise to a Riemannian metric and a symplectic structure on the base space. With these we derive a geometric uncertainty relation for observables acting on quantum systems in mixed states. We also give a geometric proof of the classical Robertson-Schrodinger uncertainty relation, and we compare the two. They turn out not to be equivalent, because of the multiple dimensions of the gauge group for general mixed states. We give examples of observables for which the geometric relation provides a stronger estimate than that of Robertson and Schrodinger, and vice versa. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 24 条
[1]  
[Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
[2]  
[Anonymous], 1927, Z. Phys. A, DOI [10.1007/bf01391200, DOI 10.1007/BF01391200]
[3]  
Ashtekar A, 1998, EINSTEINS PATH ESSAY, P23
[4]   Geometrization of statistical mechanics [J].
Brody, DC ;
Hughston, LP .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1985) :1683-1715
[5]   Purity- and entropy-bounded uncertainty relations for mixed quantum states [J].
Dodonov, VV .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2002, 4 (03) :S98-S108
[6]   GENERALIZED UNCERTAINTY RELATION AND CORRELATED COHERENT STATES [J].
DODONOV, VV ;
KURMYSHEV, EV ;
MANKO, VI .
PHYSICS LETTERS A, 1980, 79 (2-3) :150-152
[7]   PRE-QUANTUM BUNDLES AND PROJECTIVE HILBERT GEOMETRIES [J].
GUNTHER, C .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1977, 16 (06) :447-464
[8]  
Heisenberg W., 1927, Z PHYS, V43, P172, DOI [10.1007/bf01397280, DOI 10.1007/BF01397280]
[9]  
INGARDEN RS, 1973, B ACAD POL SCI SMAP, V21, P579
[10]   GEOMETRIZATION OF QUANTUM-MECHANICS [J].
KIBBLE, TWB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 65 (02) :189-201