Metabolic impact assessment for heterologous protein production in Streptomyces lividans based on genome-scale metabolic network modeling

被引:8
作者
Lule, Ivan [1 ]
D'Huys, Pieter-Jan [1 ]
Van Mellaert, Lieve [2 ]
Anne, Jozef [2 ]
Bernaerts, Kristel [1 ]
Van Impe, Jan [1 ]
机构
[1] Katholieke Univ Leuven, Dept Chem Engn, Chem & Biochem Proc Technol & Control Sect BioTeC, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Microbiol & Immunol, Lab Mol Bacteriol, B-3001 Louvain, Belgium
关键词
Streptomyces lividans; (geometric) Flux balance analysis; Mouse tumor necrosis factor (mTNF-alpha); Heterologous proteins; Genome-scale metabolic network; FLUX BALANCE ANALYSIS; NECROSIS-FACTOR-ALPHA; ESCHERICHIA-COLI; SECRETION; OVEREXPRESSION; COELICOLOR;
D O I
10.1016/j.mbs.2013.08.006
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The metabolic impact exerted on a microorganism due to heterologous protein production is still poorly understood in Streptomyces lividans. In this present paper, based on exometabolomic data, a proposed genome-scale metabolic network model is used to assess this metabolic impact in S. lividans. Constraint-based modeling results obtained in this work revealed that the metabolic impact due to heterologous protein production is widely distributed in the genome of S. lividans, causing both slow substrate assimilation and a shift in active pathways. Exchange fluxes that are critical for model performance have been identified for metabolites of mouse tumor necrosis factor, histidine, valine and lysine, as well as biomass. Our results unravel the interaction of heterologous protein production with intracellular metabolism of S. lividans, thus, a possible basis for further studies in relieving the metabolic burden via metabolic or bioprocess engineering. (C) 2013 Published by Elsevier Inc.
引用
收藏
页码:113 / 121
页数:9
相关论文
共 50 条
  • [31] ON THE RECONSTRUCTION OF THE MUS MUSCULUS GENOME-SCALE METABOLIC NETWORK MODEL
    Quek, Lake-Ee
    Nielsen, Lars K.
    GENOME INFORMATICS 2008, VOL 21, 2008, 21 : 89 - 100
  • [32] AraGEM, a Genome-Scale Reconstruction of the Primary Metabolic Network in Arabidopsis
    Dal'Molin, Cristiana Gomes de Oliveira
    Quek, Lake-Ee
    Palfreyman, Robin William
    Brumbley, Stevens Michael
    Nielsen, Lars Keld
    PLANT PHYSIOLOGY, 2010, 152 (02) : 579 - 589
  • [33] Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production
    Roberts, Seth B.
    Gowen, Christopher M.
    Brooks, J. Paul
    Fong, Stephen S.
    BMC SYSTEMS BIOLOGY, 2010, 4
  • [34] Critical assessment of genome-scale metabolic models of Arabidopsis thaliana
    Amirzakaria, Javad Zamani
    Marashi, Sayed-Amir
    Malboobi, Mohammad Ali
    Lohrasebi, Tahmineh
    Forouzan, Esmail
    MOLECULAR OMICS, 2022, 18 (04) : 328 - 335
  • [35] Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing
    Salimi, Fahimeh
    Zhuang, Kai
    Mahadevan, Radhakrishnan
    BIOTECHNOLOGY JOURNAL, 2010, 5 (07) : 726 - 738
  • [36] Genome-scale reconstruction of a metabolic network for Gluconobacter oxydans 621H
    Wu, Xinsen
    Wang, Xiaoyang
    Lu, Wenyu
    BIOSYSTEMS, 2014, 117 : 10 - 14
  • [37] iRsp1095: A genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network
    Imam, Saheed
    Yilmaz, Safak
    Sohmen, Ugur
    Gorzalski, Alexander S.
    Reed, Jennifer L.
    Noguera, Daniel R.
    Donohue, Timothy J.
    BMC SYSTEMS BIOLOGY, 2011, 5
  • [38] Genome-Scale Metabolic Modeling Enables In-Depth Understanding of Big Data
    Passi, Anurag
    Tibocha-Bonilla, Juan D.
    Kumar, Manish
    Tec-Campos, Diego
    Zengler, Karsten
    Zuniga, Cristal
    METABOLITES, 2022, 12 (01)
  • [39] Ethanol production improvement driven by genome-scale metabolic modeling and sensitivity analysis in Scheffersomyces stipitis
    Acevedo, Alejandro
    Conejeros, Raul
    Aroca, German
    PLOS ONE, 2017, 12 (06):
  • [40] Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks
    Ruppin, Eytan
    Papin, Jason A.
    de Figueiredo, Luis F.
    Schuster, Stefan
    CURRENT OPINION IN BIOTECHNOLOGY, 2010, 21 (04) : 502 - 510