Fuel gain exceeding unity in an inertially confined fusion implosion

被引:819
作者
Hurricane, O. A. [1 ]
Callahan, D. A. [1 ]
Casey, D. T. [1 ]
Celliers, P. M. [1 ]
Cerjan, C. [1 ]
Dewald, E. L. [1 ]
Dittrich, T. R. [1 ]
Doeppner, T. [1 ]
Hinkel, D. E. [1 ]
Hopkins, L. F. Berzak [1 ]
Kline, J. L. [2 ]
Le Pape, S. [1 ]
Ma, T. [1 ]
MacPhee, A. G. [1 ]
Milovich, J. L. [1 ]
Pak, A. [1 ]
Park, H. -S. [1 ]
Patel, P. K. [1 ]
Remington, B. A. [1 ]
Salmonson, J. D. [1 ]
Springer, P. T. [1 ]
Tommasini, R. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
RAYLEIGH-TAYLOR INSTABILITY; NATIONAL IGNITION FACILITY;
D O I
10.1038/nature13008
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved(1). A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method(2,3), which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from alpha-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.
引用
收藏
页码:343 / +
页数:7
相关论文
共 29 条
[1]  
[Anonymous], REV SCI INSTRUM
[2]  
Atzeni S., 2004, PHYS INERTIAL FUSION, V32, P398
[3]   Growth rates of the ablative Rayleigh-Taylor instability in inertial confinement fusion [J].
Betti, R ;
Goncharov, VN ;
McCrory, RL ;
Verdon, CP .
PHYSICS OF PLASMAS, 1998, 5 (05) :1446-1454
[4]   Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement [J].
Betti, R. ;
Chang, P. Y. ;
Spears, B. K. ;
Anderson, K. S. ;
Edwards, J. ;
Fatenejad, M. ;
Lindl, J. D. ;
McCrory, R. L. ;
Nora, R. ;
Shvarts, D. .
PHYSICS OF PLASMAS, 2010, 17 (05)
[5]   RAYLEIGH-TAYLOR INSTABILITY AND LASER-PELLET FUSION [J].
BODNER, SE .
PHYSICAL REVIEW LETTERS, 1974, 33 (13) :761-764
[6]   IMPROVED FORMULAS FOR FUSION CROSS-SECTIONS AND THERMAL REACTIVITIES [J].
BOSCH, HS ;
HALE, GM .
NUCLEAR FUSION, 1992, 32 (04) :611-631
[7]   The velocity campaign for ignition on NIF [J].
Callahan, D. A. ;
Meezan, N. B. ;
Glenzer, S. H. ;
MacKinnon, A. J. ;
Benedetti, L. R. ;
Bradley, D. K. ;
Celeste, J. R. ;
Celliers, P. M. ;
Dixit, S. N. ;
Doeppner, T. ;
Dzentitis, E. G. ;
Glenn, S. ;
Haan, S. W. ;
Haynam, C. A. ;
Hicks, D. G. ;
Hinkel, D. E. ;
Jones, O. S. ;
Landen, O. L. ;
London, R. A. ;
MacPhee, A. G. ;
Michel, P. A. ;
Moody, J. D. ;
Ralph, J. E. ;
Robey, H. F. ;
Rosen, M. D. ;
Schneider, M. B. ;
Strozzi, D. J. ;
Suter, L. J. ;
Town, R. P. J. ;
Widmann, K. ;
Williams, E. A. ;
Edwards, M. J. ;
MacGowan, B. J. ;
Lindl, J. D. ;
Atherton, L. J. ;
Kyrala, G. A. ;
Kline, J. L. ;
Olson, R. E. ;
Edgell, D. ;
Regan, S. P. ;
Nikroo, A. ;
Wilkins, H. ;
Kilkenny, J. D. ;
Moore, A. S. .
PHYSICS OF PLASMAS, 2012, 19 (05)
[8]   Integrated diagnostic analysis of inertial confinement fusion capsule performance [J].
Cerjan, Charles ;
Springer, Paul T. ;
Sepke, Scott M. .
PHYSICS OF PLASMAS, 2013, 20 (05)
[9]   Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility [J].
Dittrich, T. R. ;
Hurricane, O. A. ;
Callahan, D. A. ;
Dewald, E. L. ;
Doeppner, T. ;
Hinkel, D. E. ;
Hopkins, L. F. Berzak ;
Le Pape, S. ;
Ma, T. ;
Milovich, J. L. ;
Moreno, J. C. ;
Patel, P. K. ;
Park, H-S ;
Remington, B. A. ;
Salmonson, J. D. ;
Kline, J. L. .
PHYSICAL REVIEW LETTERS, 2014, 112 (05)
[10]   Progress towards ignition on the National Ignition Facility [J].
Edwards, M. J. ;
Patel, P. K. ;
Lindl, J. D. ;
Atherton, L. J. ;
Glenzer, S. H. ;
Haan, S. W. ;
Kilkenny, J. D. ;
Landen, O. L. ;
Moses, E. I. ;
Nikroo, A. ;
Petrasso, R. ;
Sangster, T. C. ;
Springer, P. T. ;
Batha, S. ;
Benedetti, R. ;
Bernstein, L. ;
Betti, R. ;
Bleuel, D. L. ;
Boehly, T. R. ;
Bradley, D. K. ;
Caggiano, J. A. ;
Callahan, D. A. ;
Celliers, P. M. ;
Cerjan, C. J. ;
Chen, K. C. ;
Clark, D. S. ;
Collins, G. W. ;
Dewald, E. L. ;
Divol, L. ;
Dixit, S. ;
Doeppner, T. ;
Edgell, D. H. ;
Fair, J. E. ;
Farrell, M. ;
Fortner, R. J. ;
Frenje, J. ;
Johnson, M. G. Gatu ;
Giraldez, E. ;
Glebov, V. Yu ;
Grim, G. ;
Hammel, B. A. ;
Hamza, A. V. ;
Harding, D. R. ;
Hatchett, S. P. ;
Hein, N. ;
Herrmann, H. W. ;
Hicks, D. ;
Hinkel, D. E. ;
Hoppe, M. ;
Hsing, W. W. .
PHYSICS OF PLASMAS, 2013, 20 (07)