The greatest prime divisor of a product of terms in an arithmetic progression

被引:9
作者
Laishram, Shanta [1 ]
Shorey, T. N. [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2006年 / 17卷 / 03期
关键词
D O I
10.1016/S0019-3577(06)80042-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:425 / 436
页数:12
相关论文
共 18 条
[1]  
Cao ZF, 1999, ACTA ARITH, V91, P85
[2]  
DEWEGER B, 1987, THESIS CWI AMSTERDAM
[3]  
Dusart P., 1998, PhD thesis
[4]  
FAULKNER M, 1966, J LONDON MATH SOC, V41, P107
[5]   THEOREM OF SYLVESTER AND SCHUR [J].
HANSON, D .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1973, 16 (02) :195-199
[6]   Number of prime divisors in a product of terms of an arithmetic progression [J].
Laishram, S ;
Shorey, TN .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2004, 15 (04) :505-521
[7]   Number of prime divisors in a product of consecutive integers [J].
Laishram, S ;
Shorey, TN .
ACTA ARITHMETICA, 2004, 113 (04) :327-341
[8]  
LAISHRAM S, IN PRESS ACTA ARITH
[9]  
LANGEVIN M, 1976, SEM DELANGE PISOT PO
[10]  
Mihailescu P, 2004, J REINE ANGEW MATH, V572, P167