Multifractal analysis for the exponential family

被引:0
作者
Iommi, Godofredo
Skorulski, Bartlomiej
机构
[1] Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
[2] Polish Acad Sci, Inst Math, Warsaw, Poland
[3] Univ Catolica Norte, Dept Matemat, Antofagasta, Chile
关键词
multifractal analysis; exponential family; conformal measures;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the multifractal spectrum for hyperbolic maps from the exponential family. We define a class of potentials for which we prove the existence of conformal measures. Next, we show that the multifractal spectrum of this conformal measure is the Legendre transform of the temperature function. We prove that the domain of the spectrum is unbounded and show that there are two possibilities for its shape.
引用
收藏
页码:857 / 869
页数:13
相关论文
共 15 条
[1]   Sets of "non-typical" points have full topological entropy and full Hausdorff dimension [J].
Barreira, L ;
Schmeling, J .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 116 (1) :29-70
[2]  
Devaney Robert L., 1999, PUBL MAT, V43, P27, DOI [10.5565/PUBLMAT_43199_02, DOI 10.5565/PUBLMAT]
[3]   Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems [J].
Hanus, P ;
Mauldin, RD ;
Urbanski, M .
ACTA MATHEMATICA HUNGARICA, 2002, 96 (1-2) :27-98
[4]   Multifractal analysis for countable Markov shifts [J].
Iommi, G .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :1881-1907
[5]   Multifractal formalism for some parabolic maps [J].
Nakaishi, K .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 :843-857
[6]   A MULTIFRACTAL FORMALISM [J].
OLSEN, L .
ADVANCES IN MATHEMATICS, 1995, 116 (01) :82-196
[7]   A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions [J].
Pesin, Y ;
Weiss, H .
JOURNAL OF STATISTICAL PHYSICS, 1997, 86 (1-2) :233-275
[8]  
Pesin Y., 1997, DIMENSION THEORY DYN
[9]   Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to diophantine approximation [J].
Pollicott, M ;
Weiss, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 207 (01) :145-171
[10]  
SCHMELING J, 1999, ERGOD THEOR DYN, V19, P1