2D Compass Codes

被引:52
作者
Li, Muyuan [1 ]
Miller, Daniel [2 ]
Newman, Michael [3 ,4 ,5 ]
Wu, Yukai [6 ]
Brown, Kenneth R. [3 ,4 ,5 ]
机构
[1] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA 30332 USA
[2] Heinrich Heine Univ Dusseldorf, Inst Theoret Phys 3, D-40225 Dusseldorf, Germany
[3] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[4] Duke Univ, Dept Chem, Durham, NC 27708 USA
[5] Duke Univ, Dept Phys, Durham, NC 27708 USA
[6] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
ERROR-CORRECTING CODES; QUANTUM; THRESHOLD;
D O I
10.1103/PhysRevX.9.021041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The compass model on a square lattice provides a natural template for building subsystem stabilizer codes. The surface code and the Bacon-Shor code represent two extremes of possible codes depending on how many gauge qubits are fixed. We explore threshold behavior in this broad class of local codes by trading locality for asymmetry and gauge degrees of freedom for stabilizer syndrome information. We analyze these codes with asymmetric and spatially inhomogeneous Pauli noise in the code capacity and phenomenological models. In these idealized settings, we observe considerably higher thresholds against asymmetric noise. At the circuit level, these codes inherit the bare-ancilla fault tolerance of the Bacon-Shor code.
引用
收藏
页数:11
相关论文
共 56 条
[1]  
Aharonov D., 1997, P 20 9 ANN ACM S THE, P176, DOI [10.1137/S0097539799359385, DOI 10.1145/258533.258579]
[2]  
Aliferis P, 2006, QUANTUM INF COMPUT, V6, P97
[3]   Fault-tolerant computing with biased-noise superconducting qubits: a case study [J].
Aliferis, P. ;
Brito, F. ;
DiVincenzo, D. P. ;
Preskill, J. ;
Steffen, M. ;
Terhal, B. M. .
NEW JOURNAL OF PHYSICS, 2009, 11
[4]   Subsystem fault tolerance with the Bacon-Shor code [J].
Aliferis, Panos ;
Cross, Andrew W. .
PHYSICAL REVIEW LETTERS, 2007, 98 (22)
[5]   Fault-tolerant quantum computation against biased noise [J].
Aliferis, Panos ;
Preskill, John .
PHYSICAL REVIEW A, 2008, 78 (05)
[6]  
[Anonymous], ARXIV160607116
[7]   Operator quantum error-correcting subsystems for self-correcting quantum memories [J].
Bacon, D .
PHYSICAL REVIEW A, 2006, 73 (01)
[8]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[9]   Strong Resilience of Topological Codes to Depolarization [J].
Bombin, H. ;
Andrist, Ruben S. ;
Ohzeki, Masayuki ;
Katzgraber, Helmut G. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW X, 2012, 2 (02)
[10]   Topological subsystem codes [J].
Bombin, H. .
PHYSICAL REVIEW A, 2010, 81 (03)