On Durrmeyer Type λ-Bernstein Operators via (p, q)-Calculus

被引:0
|
作者
Cai, Qing-Bo [1 ]
Zhou, Guorong [2 ]
机构
[1] Quanzhou Normal Univ, Sch Math & Comp Sci, Quanzhou 362000, Peoples R China
[2] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Peoples R China
关键词
APPROXIMATION; Q)-ANALOG; BUTZER;
D O I
10.1155/2020/8832627
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, Durrmeyer type lambda-Bernstein operators via (p, q)-calculus are constructed, the first and second moments and central moments of these operators are estimated, a Korovkin type approximation theorem is established, and the estimates on the rate of convergence by using the modulus of continuity of second order and Steklov mean are studied, a convergence theorem for the Lipschitz continuous functions is also obtained. Finally, some numerical examples are given to show that these operators we defined converge faster in some lambda cases than Durrmeyer type (p, q)-Bernstein operators.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Bezier variant of the Bernstein-Durrmeyer type operators
    Acar, Tuncer
    Agrawal, P. N.
    Neer, Trapti
    RESULTS IN MATHEMATICS, 2017, 72 (03) : 1341 - 1358
  • [22] Approximation properties of Bernstein-Durrmeyer type operators
    Cardenas-Morales, D.
    Garrancho, P.
    Rasa, I.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 1 - 8
  • [23] Pointwise approximation for a type of Bernstein-Durrmeyer operators
    Liu, Guofen
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [24] Durrmeyer-Type Generalization of Parametric Bernstein Operators
    Kajla, Arun
    Mursaleen, Mohammad
    Acar, Tuncer
    SYMMETRY-BASEL, 2020, 12 (07):
  • [25] Approximation Properties by Bernstein-Durrmeyer Type Operators
    Gupta, Vijay
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (02) : 363 - 374
  • [26] Pointwise approximation for a type of Bernstein-Durrmeyer operators
    Guofen Liu
    Journal of Inequalities and Applications, 2014
  • [27] Two families of Bernstein-Durrmeyer type operators
    Cardenas-Morales, Daniel
    Gupta, Vijay
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 248 : 342 - 353
  • [28] Approximation properties of (p, q)-Bernstein type operators
    Finta, Zoltan
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2016, 8 (02) : 222 - 232
  • [29] BERNSTEIN-DURRMEYER OPERATORS
    ADELL, JA
    DELACAL, J
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (3-6) : 1 - 14
  • [30] King Type (p, q)-Bernstein Schurer Operators
    Bawa, Parveen
    Bhardwaj, Neha
    Bhatia, Sumit Kaur
    THAI JOURNAL OF MATHEMATICS, 2023, 21 (03): : 431 - 443