On Durrmeyer Type λ-Bernstein Operators via (p, q)-Calculus

被引:0
|
作者
Cai, Qing-Bo [1 ]
Zhou, Guorong [2 ]
机构
[1] Quanzhou Normal Univ, Sch Math & Comp Sci, Quanzhou 362000, Peoples R China
[2] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Peoples R China
关键词
APPROXIMATION; Q)-ANALOG; BUTZER;
D O I
10.1155/2020/8832627
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, Durrmeyer type lambda-Bernstein operators via (p, q)-calculus are constructed, the first and second moments and central moments of these operators are estimated, a Korovkin type approximation theorem is established, and the estimates on the rate of convergence by using the modulus of continuity of second order and Steklov mean are studied, a convergence theorem for the Lipschitz continuous functions is also obtained. Finally, some numerical examples are given to show that these operators we defined converge faster in some lambda cases than Durrmeyer type (p, q)-Bernstein operators.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Some properties of q-Bernstein-Durrmeyer operators
    Karsli, Harun
    TBILISI MATHEMATICAL JOURNAL, 2019, 12 (04) : 189 - 204
  • [12] Generalized Bernstein–Durrmeyer operators of blending type
    Arun Kajla
    Meenu Goyal
    Afrika Matematika, 2019, 30 : 1103 - 1118
  • [13] Bézier–Bernstein–Durrmeyer type operators
    Arun Kajla
    Tuncer Acar
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [14] Modified α-Bernstein-Durrmeyer-Type Operators
    Agrawal, P. N.
    Kajla, Arun
    Singh, Sompal
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (06): : 2049 - 2061
  • [15] Modified Bernstein-Durrmeyer Type Operators
    Kajla, Arun
    Miclaus, Dan
    MATHEMATICS, 2022, 10 (11)
  • [16] Approximation Properties by Bernstein–Durrmeyer Type Operators
    Vijay Gupta
    Complex Analysis and Operator Theory, 2013, 7 : 363 - 374
  • [17] Bezier variant of the Bernstein–Durrmeyer type operators
    Tuncer Acar
    P. N. Agrawal
    Trapti Neer
    Results in Mathematics, 2017, 72 : 1341 - 1358
  • [18] q-Bernstein-Schurer-Durrmeyer type operators for functions of one and two variables
    Kajla, Arun
    Ispir, Nurhayat
    Agrawal, P. N.
    Goyal, Meenu
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 : 372 - 385
  • [19] Generalized Bernstein-Durrmeyer operators of blending type
    Kajla, Arun
    Goyal, Meenu
    AFRIKA MATEMATIKA, 2019, 30 (7-8) : 1103 - 1118
  • [20] BLENDING TYPE APPROXIMATION BY BERNSTEIN-DURRMEYER TYPE OPERATORS
    Kajla, Arun
    Goyal, Meenu
    MATEMATICKI VESNIK, 2018, 70 (01): : 40 - 54