On Durrmeyer Type λ-Bernstein Operators via (p, q)-Calculus

被引:0
|
作者
Cai, Qing-Bo [1 ]
Zhou, Guorong [2 ]
机构
[1] Quanzhou Normal Univ, Sch Math & Comp Sci, Quanzhou 362000, Peoples R China
[2] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Peoples R China
关键词
APPROXIMATION; Q)-ANALOG; BUTZER;
D O I
10.1155/2020/8832627
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, Durrmeyer type lambda-Bernstein operators via (p, q)-calculus are constructed, the first and second moments and central moments of these operators are estimated, a Korovkin type approximation theorem is established, and the estimates on the rate of convergence by using the modulus of continuity of second order and Steklov mean are studied, a convergence theorem for the Lipschitz continuous functions is also obtained. Finally, some numerical examples are given to show that these operators we defined converge faster in some lambda cases than Durrmeyer type (p, q)-Bernstein operators.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] On Durrmeyer-type generalization of (p, q)-Bernstein operators
    Sharma, Honey
    ARABIAN JOURNAL OF MATHEMATICS, 2016, 5 (04) : 239 - 248
  • [2] (p, q)-Genuine Bernstein Durrmeyer operators
    Gupta, Vijay
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2016, 9 (03): : 399 - 409
  • [3] Statistical Approximation of the q-Bernstein-Durrmeyer Type Operators
    Ren, Mei-Ying
    FUZZY SYSTEMS & OPERATIONS RESEARCH AND MANAGEMENT, 2016, 367 : 117 - 124
  • [4] A-Statistical Convergence Properties of Kantorovich Type λ-Bernstein Operators Via (p, q)-Calculus
    Zeng, Liang
    Cai, Qing-Bo
    Xu, Xiao-Wei
    MATHEMATICS, 2020, 8 (02)
  • [5] APPROXIMATION PROPERTIES FOR MODIFIED (p, q)-BERNSTEIN-DURRMEYER OPERATORS
    Mursaleen, Mohammad
    Alabied, Ahmed A. H.
    MATHEMATICA BOHEMICA, 2018, 143 (02): : 173 - 188
  • [6] On genuine q-Bernstein-Durrmeyer operators
    Mahmudov, Nazim I.
    Sabancigil, Pembe
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 76 (3-4): : 465 - 479
  • [7] Bivariate q-Bernstein-Chlodowsky-Durrmeyer type operators and the associated GBS operators
    Garg, Tarul
    Ispir, Nurhayat
    Agrawal, P. N.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (05)
  • [8] Genuine q-Stancu-Bernstein-Durrmeyer Operators
    Sabancigil, Pembe
    SYMMETRY-BASEL, 2023, 15 (02):
  • [9] Durrmeyer-Type Generalization of μ-Bernstein Operators
    Kajla, Arun
    Mohiuddine, S. A.
    Alotaibi, Abdullah
    FILOMAT, 2022, 36 (01) : 349 - 360
  • [10] Bezier-Bernstein-Durrmeyer type operators
    Kajla, Arun
    Acar, Tuncer
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 114 (01)