Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds

被引:66
作者
Chen, Li [1 ]
Chen, Wenyi [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
Nonlinear parabolic equation; Gradient estimate; Positive solution;
D O I
10.1007/s10455-008-9141-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we derive a local gradient estimate for the positive solution to the following parabolic equation u(t) = Delta u + au log u + bu in M, where a, b are real constants, M is a complete noncompact Riemannian manifold. As a corollary, we give a local gradient estimate for the corresponding elliptic equation: Delta u + au log u + bu = 0 in M, which improves and extends the result of Ma (J Funct Anal 241: 374-382, 2006) and get a bound for the positive solution to this elliptic equation.
引用
收藏
页码:397 / 404
页数:8
相关论文
共 10 条
[1]  
Aubin T., 1982, Monge-Ampere Equations, V252
[2]   Geometry of Ricci solitons [J].
Cao, Huai-Dong .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (02) :121-142
[3]   DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :333-354
[4]  
CHOW B, 2006, HAMLITION RICCI FLOW
[5]  
EMINENTI M, 2006, ARXIVMATH0607546V2
[6]  
LI JY, 1991, J FUNCT ANAL, V100, P233
[7]  
LI P, 1986, ACTA MATH, V156, P139
[8]   Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds [J].
Ma, Li .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 241 (01) :374-382
[9]   GRADIENT ESTIMATES AND A LIOUVILLE TYPE THEOREM FOR THE SCHRODINGER OPERATOR [J].
NEGRIN, ER .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 127 (01) :198-203
[10]  
[No title captured]