Adaptive Neural Network Control of a Fully Actuated Marine Surface Vessel with Multiple Output Constraints

被引:258
作者
Zhao, Zhen [1 ]
He, Wei [2 ,3 ]
Ge, Shuzhi Sam [2 ,4 ,5 ]
机构
[1] Civil Aviat Univ China, Coll Aerosp Automat, Tianjin 300300, Peoples R China
[2] Univ Elect Sci & Technol China, Inst Robot, Chengdu 611731, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China
[4] Univ Elect Sci & Technol China, Sch Comp Sci & Technol, Chengdu 611731, Peoples R China
[5] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
基金
中国国家自然科学基金;
关键词
Adaptive neural network (NN) control; barrier Lyapunov function; marine surface vessel; multiple output constraints; trajectory tracking; RECEDING HORIZON CONTROL; MODE TRACKING CONTROL; NONLINEAR-SYSTEMS; REFERENCE GOVERNOR; PREDICTIVE CONTROL; BOUNDARY CONTROL; STABILIZATION; DISTURBANCES; SHIP;
D O I
10.1109/TCST.2013.2281211
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this brief, we investigate the control problem of tracking a desired trajectory for a fully actuated marine surface vessel considering multiple outputs constraints. To prevent multiple output constraints violation, a symmetric barrier Lyapunov function (SBLF) is employed. Backstepping, in combination with adaptive feedback approximation techniques, is introduced to design an adaptive neural network control. Experimental simulations are provided to evaluate the feasibility and effectiveness of the proposed controller. Compared to the adaptive neural network control without multiple output constraints, the proposed adaptive neural network using the SBLF can guarantee that all the outputs remain bounded.
引用
收藏
页码:1536 / 1543
页数:8
相关论文
共 40 条
[1]  
[Anonymous], HDB STAT
[2]  
[Anonymous], 1995, NONLINEAR ADAPTIVE C
[3]   Sliding mode tracking control of surface vessels [J].
Ashrafiuon, Hashem ;
Muske, Kenneth R. .
2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, :556-561
[4]   Reference governor for constrained nonlinear systems [J].
Bemporad, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (03) :415-419
[5]   Robust attitude control of helicopters with actuator dynamics using neural networks [J].
Chen, M. ;
Ge, S. S. ;
Ren, B. .
IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (12) :2837-2854
[6]   Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints [J].
Chen, Mou ;
Ge, Shuzhi Sam ;
Ren, Beibei .
AUTOMATICA, 2011, 47 (03) :452-465
[7]   Robust Adaptive Neural Network Control for a Class of Uncertain MIMO Nonlinear Systems With Input Nonlinearities [J].
Chen, Mou ;
Ge, Shuzhi Sam ;
How, Bernard Voon Ee .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (05) :796-812
[8]   Systems with persistent disturbances: predictive control with restricted constraints [J].
Chisci, L ;
Rossiter, JA ;
Zappa, G .
AUTOMATICA, 2001, 37 (07) :1019-1028
[9]   Identification and Learning Control of Ocean Surface Ship Using Neural Networks [J].
Dai, Shi-Lu ;
Wang, Cong ;
Luo, Fei .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2012, 8 (04) :801-810
[10]   Distributed receding horizon control for multi-vehicle formation stabilization [J].
Dunbar, WB ;
Murray, RM .
AUTOMATICA, 2006, 42 (04) :549-558