Accounting for technical noise in single-cell RNA-seq experiments

被引:12
|
作者
Brennecke, Philip [1 ]
Anders, Simon [1 ]
Kim, Jong Kyoung [2 ]
Kolodziejczyk, Aleksandra A. [2 ,3 ]
Zhang, Xiuwei [2 ]
Proserpio, Valentina [4 ]
Baying, Bianka [1 ]
Benes, Vladimir [1 ]
Teichmann, Sarah A. [2 ,3 ]
Marioni, John C. [2 ]
Heisler, Marcus G. [1 ,5 ]
机构
[1] European Mol Biol Lab, D-69012 Heidelberg, Germany
[2] European Bioinformat Inst, EMBL, Hinxton, England
[3] Wellcome Trust Sanger Inst, Hinxton, England
[4] MRC, Mol Biol Lab, Cambridge CB2 2QH, England
[5] Univ Sydney, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会; 欧洲研究理事会;
关键词
GENE-EXPRESSION; PLURIPOTENCY; LANDSCAPE;
D O I
10.1038/NMETH.2645
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA-seq can yield valuable insights about the variability within a population of seemingly homogeneous cells. We developed a quantitative statistical method to distinguish true biological variability from the high levels of technical noise in single-cell experiments. Our approach quantifies the statistical significance of observed cell-to-cell variability in expression strength on a gene-by-gene basis. We validate our approach using two independent data sets from Arabidopsis thaliana and Mus musculus.
引用
收藏
页码:1093 / 1095
页数:3
相关论文
共 50 条
  • [11] Accounting for technical noise in differential expression analysis of single-cell RNA sequencing data
    Jia, Cheng
    Hu, Yu
    Kelly, Derek
    Kim, Junhyong
    Li, Mingyao
    Zhang, Nancy R.
    NUCLEIC ACIDS RESEARCH, 2017, 45 (19) : 10978 - 10988
  • [12] Advances and challenges in single-cell RNA-seq of microbial communities
    Imdahl, Fabian
    Saliba, Antoine-Emmanuel
    CURRENT OPINION IN MICROBIOLOGY, 2020, 57 : 102 - 110
  • [13] Single-cell RNA-seq clustering: datasets, models, and algorithms
    Peng, Lihong
    Tian, Xiongfei
    Tian, Geng
    Xu, Junlin
    Huang, Xin
    Weng, Yanbin
    Yang, Jialiang
    Zhou, Liqian
    RNA BIOLOGY, 2020, 17 (06) : 765 - 783
  • [14] PsiNorm: a scalable normalization for single-cell RNA-seq data
    Borella, Matteo
    Martello, Graziano
    Risso, Davide
    Romualdi, Chiara
    BIOINFORMATICS, 2022, 38 (01) : 164 - 172
  • [15] CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification
    Hashimshony, Tamar
    Wagner, Florian
    Sher, Noa
    Yanai, Itai
    CELL REPORTS, 2012, 2 (03): : 666 - 673
  • [16] An interpretable framework for clustering single-cell RNA-Seq datasets
    Zhang, Jesse M.
    Fan, Jue
    Fan, Christina
    Rosenfeld, David
    Tse, David N.
    BMC BIOINFORMATICS, 2018, 19
  • [17] Embracing the dropouts in single-cell RNA-seq dynamics modelling
    Xiang, Mingrong
    Luo, Wei
    Hou, Jingyu
    Tao, Wenjing
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [18] Accounting for cell type hierarchy in evaluating single cell RNA-seq clustering
    Zhijin Wu
    Hao Wu
    Genome Biology, 21
  • [19] A Survey on Methods for Predicting Polyadenylation Sites from DNA Sequences, Bulk RNA-seq, and Single-cell RNA-seq
    Ye, Wenbin
    Lian, Qiwei
    Ye, Congting
    Wu, Xiaohui
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (01) : 67 - 83
  • [20] Defining the three cell lineages of the human blastocyst by single-cell RNA-seq
    Blakeley, Paul
    Fogarty, Norah M. E.
    del Valle, Ignacio
    Wamaitha, Sissy E.
    Hu, Tim Xiaoming
    Elder, Kay
    Snell, Philip
    Christie, Leila
    Robson, Paul
    Niakan, Kathy K.
    DEVELOPMENT, 2015, 142 (18): : 3151 - U115