Accounting for technical noise in single-cell RNA-seq experiments

被引:12
|
作者
Brennecke, Philip [1 ]
Anders, Simon [1 ]
Kim, Jong Kyoung [2 ]
Kolodziejczyk, Aleksandra A. [2 ,3 ]
Zhang, Xiuwei [2 ]
Proserpio, Valentina [4 ]
Baying, Bianka [1 ]
Benes, Vladimir [1 ]
Teichmann, Sarah A. [2 ,3 ]
Marioni, John C. [2 ]
Heisler, Marcus G. [1 ,5 ]
机构
[1] European Mol Biol Lab, D-69012 Heidelberg, Germany
[2] European Bioinformat Inst, EMBL, Hinxton, England
[3] Wellcome Trust Sanger Inst, Hinxton, England
[4] MRC, Mol Biol Lab, Cambridge CB2 2QH, England
[5] Univ Sydney, Sydney, NSW 2006, Australia
基金
欧洲研究理事会; 澳大利亚研究理事会;
关键词
GENE-EXPRESSION; PLURIPOTENCY; LANDSCAPE;
D O I
10.1038/NMETH.2645
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA-seq can yield valuable insights about the variability within a population of seemingly homogeneous cells. We developed a quantitative statistical method to distinguish true biological variability from the high levels of technical noise in single-cell experiments. Our approach quantifies the statistical significance of observed cell-to-cell variability in expression strength on a gene-by-gene basis. We validate our approach using two independent data sets from Arabidopsis thaliana and Mus musculus.
引用
收藏
页码:1093 / 1095
页数:3
相关论文
共 50 条
  • [1] A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
    Korthauer, Keegan D.
    Chu, Li-Fang
    Newton, Michael A.
    Li, Yuan
    Thomson, James
    Stewart, Ron
    Kendziorski, Christina
    GENOME BIOLOGY, 2016, 17
  • [2] Recent Developments in Single-Cell RNA-Seq of Microorganisms
    Zhang, Yi
    Gao, Jiaxin
    Huang, Yanyi
    Wang, Jianbin
    BIOPHYSICAL JOURNAL, 2018, 115 (02) : 173 - 180
  • [3] Accounting for cell type hierarchy in evaluating single cell RNA-seq clustering
    Wu, Zhijin
    Wu, Hao
    GENOME BIOLOGY, 2020, 21 (01)
  • [4] Single-cell RNA-seq: advances and future challenges
    Saliba, Antoine-Emmanuel
    Westermann, Alexander J.
    Gorski, Stanislaw A.
    Vogel, Joerg
    NUCLEIC ACIDS RESEARCH, 2014, 42 (14) : 8845 - 8860
  • [5] The Advances of Single-Cell RNA-Seq in Kidney Immunology
    Zeng, Honghui
    Yang, Xiaoqiang
    Luo, Siweier
    Zhou, Yiming
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [6] Enhancing biological signals and detection rates in single-cell RNA-seq experiments with cDNA library equalization
    Bacher, Rhonda
    Chu, Li-Fang
    Argus, Cara
    Bolin, Jennifer M.
    Knight, Parker
    Thomson, James A.
    Stewart, Ron
    Kendziorski, Christina
    NUCLEIC ACIDS RESEARCH, 2022, 50 (02) : E12
  • [7] An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data
    Sun, Xifang
    Sun, Shiquan
    Yang, Sheng
    CELLS, 2019, 8 (10)
  • [8] CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification
    Hashimshony, Tamar
    Wagner, Florian
    Sher, Noa
    Yanai, Itai
    CELL REPORTS, 2012, 2 (03): : 666 - 673
  • [9] Accounting for technical noise in differential expression analysis of single-cell RNA sequencing data
    Jia, Cheng
    Hu, Yu
    Kelly, Derek
    Kim, Junhyong
    Li, Mingyao
    Zhang, Nancy R.
    NUCLEIC ACIDS RESEARCH, 2017, 45 (19) : 10978 - 10988
  • [10] Exponential scaling of single-cell RNA-seq in the past decade
    Svensson, Valentine
    Vento-Tormo, Roser
    Teichmann, Sarah A.
    NATURE PROTOCOLS, 2018, 13 (04) : 599 - 604