A residual-based error bound for the multilinear PageRank vector

被引:3
|
作者
Guo, Pei-Chang [1 ]
机构
[1] China Univ Geosci, Sch Sci, Beijing 100083, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2020年 / 68卷 / 03期
关键词
Quadratic vector equation; multilinear PageRank; error bound;
D O I
10.1080/03081087.2018.1509937
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The multilinear PageRank vector is the nonnegative and stochastic solution of a system of polynomial equations. In this paper, we consider the case for a third-order tensor in a particular parameter regime. A posteriori error bound is given, which is a bound on the distance between an approximate solution and the real solution, in terms of the residual of the approximate solution. Numerical experiments show that this bound is fairly sharp.
引用
收藏
页码:568 / 574
页数:7
相关论文
共 50 条
  • [31] A RESIDUAL-BASED A POSTERIORI ERROR ESTIMATOR FOR THE STOKES-DARCY COUPLED PROBLEM
    Babuska, Ivo
    Gatica, Gabriel N.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) : 498 - 523
  • [32] Sequential Residual-Based RAIM
    Joerger, Mathieu
    Pervan, Boris
    PROCEEDINGS OF THE 23RD INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2010), 2010, : 3167 - 3180
  • [33] Residual-Based A Posteriori Error Estimator for the Mixed Finite Element Approximation of the Biharmonic Equation
    Gudi, Thirupathi
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (02) : 315 - 328
  • [34] Some new residual-based a posteriori error estimators for the mortar finite element methods
    Feng Wang
    Xuejun Xu
    Numerische Mathematik, 2012, 120 : 543 - 571
  • [35] Residual-based a posteriori error estimation for multipoint flux mixed finite element methods
    Du, Shaohong
    Sun, Shuyu
    Xie, Xiaoping
    NUMERISCHE MATHEMATIK, 2016, 134 (01) : 197 - 222
  • [36] Residual-based a posteriori error estimation for contact problems approximated by Nitsche's method
    Chouly, Franz
    Fabre, Mathieu
    Hild, Patrick
    Pousin, Jerome
    Renard, Yves
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (02) : 921 - 954
  • [37] Local, residual-based a posteriori error estimates forcing adaptive boundary element methods
    Schulz, H
    Wendland, WL
    BOUNDARY ELEMENT TOPICS, 1997, : 445 - 470
  • [38] Some new residual-based a posteriori error estimators for the mortar finite element methods
    Wang, Feng
    Xu, Xuejun
    NUMERISCHE MATHEMATIK, 2012, 120 (03) : 543 - 571
  • [39] On score vector- and residual-based CUSUM tests in ARMA-GARCH models
    Oh, Haejune
    Lee, Sangyeol
    STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (03): : 385 - 406
  • [40] Randomized residual-based error estimators for the proper generalized decomposition approximation of parametrized problems
    Smetana, Kathrin
    Zahm, Olivier
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (23) : 5153 - 5177