A residual-based error bound for the multilinear PageRank vector

被引:3
|
作者
Guo, Pei-Chang [1 ]
机构
[1] China Univ Geosci, Sch Sci, Beijing 100083, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2020年 / 68卷 / 03期
关键词
Quadratic vector equation; multilinear PageRank; error bound;
D O I
10.1080/03081087.2018.1509937
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The multilinear PageRank vector is the nonnegative and stochastic solution of a system of polynomial equations. In this paper, we consider the case for a third-order tensor in a particular parameter regime. A posteriori error bound is given, which is a bound on the distance between an approximate solution and the real solution, in terms of the residual of the approximate solution. Numerical experiments show that this bound is fairly sharp.
引用
收藏
页码:568 / 574
页数:7
相关论文
共 50 条
  • [21] Improved Estimation and Forecasting Through Residual-Based Model Error Quantification
    Lu, Minjie
    Chen, Yan
    SPE JOURNAL, 2020, 25 (02): : 951 - 968
  • [22] Residual-based a posteriori error estimation for the Maxwell's eigenvalue problem
    Boffi, Daniele
    Gastaldi, Lucia
    Rodriguez, Rodolfo
    Sebestova, Ivana
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (04) : 1710 - 1732
  • [23] Perron-based algorithms for the multilinear PageRank
    Meini, Beatrice
    Poloni, Federico
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (06)
  • [24] Residual-based a posteriori error estimation for mixed virtual element methods
    Munar, Mauricio
    Cangiani, Andrea
    Velasquez, Ivan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 166 : 182 - 197
  • [25] Iterative residual-based vector methods to accelerate fixed point iterations
    Ramiere, Isabelle
    Helfer, Thomas
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (09) : 2210 - 2226
  • [26] An a posteriori residual-based spatial discretization error estimator for SN neutron transport
    Hart, Nathan H.
    Azmy, Yousry Y.
    Duo, Jose I.
    ANNALS OF NUCLEAR ENERGY, 2020, 137 (137)
  • [27] Residual-based a posteriori error analysis for symmetric mixed Arnold–Winther FEM
    Carsten Carstensen
    Dietmar Gallistl
    Joscha Gedicke
    Numerische Mathematik, 2019, 142 : 205 - 234
  • [28] RESIDUAL-BASED A POSTERIORI ERROR ESTIMATE FOR INTERFACE PROBLEMS: NONCONFORMING LINEAR ELEMENTS
    Cai, Zhiqiang
    He, Cuiyu
    Zhang, Shun
    MATHEMATICS OF COMPUTATION, 2017, 86 (304) : 617 - 636
  • [29] A theory for local, a posteriori, pointwise, residual-based estimation of the finite element error
    Hugger, J
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 135 (02) : 241 - 292
  • [30] On score vector- and residual-based CUSUM tests in ARMA–GARCH models
    Haejune Oh
    Sangyeol Lee
    Statistical Methods & Applications, 2018, 27 : 385 - 406