A residual-based error bound for the multilinear PageRank vector

被引:3
作者
Guo, Pei-Chang [1 ]
机构
[1] China Univ Geosci, Sch Sci, Beijing 100083, Peoples R China
关键词
Quadratic vector equation; multilinear PageRank; error bound;
D O I
10.1080/03081087.2018.1509937
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The multilinear PageRank vector is the nonnegative and stochastic solution of a system of polynomial equations. In this paper, we consider the case for a third-order tensor in a particular parameter regime. A posteriori error bound is given, which is a bound on the distance between an approximate solution and the real solution, in terms of the residual of the approximate solution. Numerical experiments show that this bound is fairly sharp.
引用
收藏
页码:568 / 574
页数:7
相关论文
共 9 条
[1]  
[Anonymous], 1999, 199966 STANF U
[2]  
[Anonymous], 1991, FUNCTIONAL ANAL
[3]  
[Anonymous], 2012, MATRIX COMPUTATIONS
[4]   The Spacey Random Walk: A Stochastic Process for Higher-Order Data [J].
Benson, Austin R. ;
Gleich, David F. ;
Lim, Lek-Heng .
SIAM REVIEW, 2017, 59 (02) :321-345
[5]   MULTILINEAR PAGERANK [J].
Gleich, David F. ;
Lim, Lek-Heng ;
Yu, Yongyang .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (04) :1507-1541
[6]   PageRank Beyond the Web [J].
Gleich, David F. .
SIAM REVIEW, 2015, 57 (03) :321-363
[7]   On the limiting probability distribution of a transition probability tensor [J].
Li, Wen ;
Ng, Michael K. .
LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (03) :362-385
[8]  
Lim L., 2005, P 1 IEEE INT WORKSH
[9]   Eigenvalues of a real supersymmetric tensor [J].
Qi, LQ .
JOURNAL OF SYMBOLIC COMPUTATION, 2005, 40 (06) :1302-1324