Nanospectroscopy of a single patch antenna strongly coupled to a mid-infrared intersubband transition in a quantum well

被引:13
作者
Gillibert, Raymond [1 ]
Malerba, Mario [2 ]
Spirito, Davide [3 ]
Giliberti, Valeria [4 ]
Li, Lianhe [5 ]
Davies, A. Giles [5 ]
Linfield, Edmund H. [5 ]
Baldassarre, Leonetta [1 ,3 ]
Colombelli, Raffaele [2 ]
Ortolani, Michele [1 ,4 ]
机构
[1] Sapienza Univ Rome, Dept Phys, I-00185 Rome, Italy
[2] Univ Paris Saclay, CNRS UMR 9001, Ctr Nanosci& Nanotechnol C2N, F-91120 Palaiseau, France
[3] IHP Leibniz Inst Innovat Mikroelekt, Technol Pk 25, D-15236 Frankfurt, Germany
[4] Ist Italiano Tecnol IIT, Ctr Life Nanosci, I-00169 Rome, Italy
[5] Univ Leeds, Sch Elect & Elect Engn, Woodhouse Lane, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
FIELD; SPECTROSCOPY; ABSORPTION;
D O I
10.1063/5.0018865
中图分类号
O59 [应用物理学];
学科分类号
摘要
Scanning-probe-assisted mid-infrared nano-spectroscopy is employed to reveal the polaritonic dispersion of individual MIM (metal-insulator-metal) square patch antennas whose modes can be strongly coupled to a mid-infrared intersubband transition. The patch antenna side length L sets the resonances between lambda =5.5 mu m and 12.5 mu m. The active region consists of a highly doped AlInAs/InGaAs/AlInAs single quantum well that presents an intersubband transition at 1190cm(-1) (lambda =8.4 mu m). When the patch antenna optical resonance approaches and matches the intersubband transition frequency (L similar to 1.8 mu m), a clear anticrossing behavior-evidence of strong coupling-is observed in the near-field scattering phase spectra of individual antennas. The measured Rabi splitting is 4.5THz. The near-field scattering spectra agree with the far-field extinction spectra acquired on arrays of identical antennas.
引用
收藏
页数:5
相关论文
共 32 条
[1]  
[Anonymous], 2003, B CANC B CANC, V90, pS51
[2]  
[Anonymous], 2016, John wiley & sons
[3]   Allergy diagnostic testing: An updated practice parameter [J].
Bernstein, I. Leonard ;
Li, James T. ;
Bernstein, David I. ;
Hamilton, Robert ;
Spector, Sheldon L. ;
Tan, Ricardo ;
Sicherer, Scott ;
Golden, David B. K. ;
Khan, David A. ;
Nicklas, Richard A. ;
Portnoy, Jay M. ;
Blessing-Moore, Joann ;
Cox, Linda ;
Lang, David M. ;
Oppenheimer, John ;
Randolph, Christopher C. ;
Schuller, Diane E. ;
Tilles, Stephen A. ;
Wallace, Dana V. ;
Levetin, Estelle ;
Weber, Richard .
ANNALS OF ALLERGY ASTHMA & IMMUNOLOGY, 2008, 100 (03) :S1-S148
[4]   AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging [J].
Dazzi, Alexandre ;
Prater, Craig B. .
CHEMICAL REVIEWS, 2017, 117 (07) :5146-5173
[5]  
Deveaud B., 2007, The Physics of Semiconductor Microcavities
[6]   Influence of the tip in near-field imaging of nanoparticle plasmonic modes: Weak and strong coupling regimes [J].
Garcia-Etxarri, Aitzol ;
Romero, Isabel ;
Javier Garcia de Abajo, F. ;
Hillenbrand, Rainer ;
Aizpurua, Javier .
PHYSICAL REVIEW B, 2009, 79 (12)
[7]   Room temperature terahertz polariton emitter [J].
Geiser, Markus ;
Scalari, Giacomo ;
Castellano, Fabrizio ;
Beck, Mattias ;
Faist, Jerome .
APPLIED PHYSICS LETTERS, 2012, 101 (14)
[8]   Fano Resonances in Nanoscale Plasmonic Systems: A Parameter-Free Modeling Approach [J].
Giannini, Vincenzo ;
Francescato, Yan ;
Amrania, Hemmel ;
Phillips, Chris C. ;
Maier, Stefan A. .
NANO LETTERS, 2011, 11 (07) :2835-2840
[9]   Protein clustering in chemically stressed HeLa cells studied by infrared nanospectroscopy [J].
Giliberti, V. ;
Baldassarre, L. ;
Rosa, A. ;
de Turris, V. ;
Ortolani, M. ;
Calvani, P. ;
Nucara, A. .
NANOSCALE, 2016, 8 (40) :17560-17567
[10]   Quantitative Measurement of Local Infrared Absorption and Dielectric Function with Tip-Enhanced Near-Field Microscopy [J].
Govyadinov, Alexander A. ;
Amenabar, Iban ;
Huth, Florian ;
Carney, P. Scott ;
Hillenbrand, Rainer .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (09) :1526-1531