On finite simple groups and Kneser graphs

被引:6
作者
Lucchini, Andrea [2 ]
Maroti, Attila [1 ,3 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1053 Budapest, Hungary
[2] Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy
[3] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
关键词
Kneser graph; Chromatic number; Finite simple group; Special linear group; Symmetric group; MAXIMAL-SUBGROUPS; PROPER SUBGROUPS; CONJECTURE; GENERATE; PAIRWISE; THEOREM; SETS;
D O I
10.1007/s10801-009-0177-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite group G let I"(G) be the (simple) graph defined on the elements of G with an edge between two (distinct) vertices if and only if they generate G. The chromatic number of I"(G) is considered for various non-solvable groups G.
引用
收藏
页码:549 / 566
页数:18
相关论文
共 26 条
[1]   Sets of permutations that generate the symmetric group pairwise [J].
Blackburn, Simon R. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) :1572-1581
[2]  
Bollobas B., 1973, Bull. Lond. Math. Soc, V5, P317, DOI [10.1112/blms/5.3.317, DOI 10.1112/BLMS/5.3.317]
[3]   Sets of elements that pairwise generate a linear group [J].
Britnell, J. R. ;
Evseev, A. ;
Guralnick, R. M. ;
Holmes, P. E. ;
Maroti, A. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (03) :442-465
[4]   Subgroup coverings of some linear groups [J].
Bryce, RA ;
Fedri, V ;
Serena, L .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 60 (02) :227-238
[5]   Colouring lines in projective space [J].
Chowdhury, A ;
Godsil, C ;
Royle, G .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (01) :39-52
[6]  
CHVATAL V, 1981, J LOND MATH SOC, V23, P207
[7]  
DAMIAN E, 2006, REND SEM MAT U PADOV, V115
[8]  
Dickson Leonard Eugene, 1958, Linear Groups: With an Exposition of the Galois Field Theory
[9]   ON THE STRUCTURE OF LINEAR GRAPHS [J].
ERDOS, P ;
STONE, AH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (12) :1087-1091
[10]   THE ERDOS-KO-RADO THEOREM FOR VECTOR-SPACES [J].
FRANKL, P ;
WILSON, RM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 43 (02) :228-236