On finite simple groups and Kneser graphs

被引:6
作者
Lucchini, Andrea [2 ]
Maroti, Attila [1 ,3 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1053 Budapest, Hungary
[2] Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy
[3] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
关键词
Kneser graph; Chromatic number; Finite simple group; Special linear group; Symmetric group; MAXIMAL-SUBGROUPS; PROPER SUBGROUPS; CONJECTURE; GENERATE; PAIRWISE; THEOREM; SETS;
D O I
10.1007/s10801-009-0177-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite group G let I"(G) be the (simple) graph defined on the elements of G with an edge between two (distinct) vertices if and only if they generate G. The chromatic number of I"(G) is considered for various non-solvable groups G.
引用
收藏
页码:549 / 566
页数:18
相关论文
共 26 条
  • [1] Sets of permutations that generate the symmetric group pairwise
    Blackburn, Simon R.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) : 1572 - 1581
  • [2] Bollobas B., 1973, Bull. Lond. Math. Soc, V5, P317, DOI [10.1112/blms/5.3.317, DOI 10.1112/BLMS/5.3.317]
  • [3] Sets of elements that pairwise generate a linear group
    Britnell, J. R.
    Evseev, A.
    Guralnick, R. M.
    Holmes, P. E.
    Maroti, A.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (03) : 442 - 465
  • [4] Subgroup coverings of some linear groups
    Bryce, RA
    Fedri, V
    Serena, L
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 60 (02) : 227 - 238
  • [5] Colouring lines in projective space
    Chowdhury, A
    Godsil, C
    Royle, G
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (01) : 39 - 52
  • [6] CHVATAL V, 1981, J LOND MATH SOC, V23, P207
  • [7] DAMIAN E, 2006, REND SEM MAT U PADOV, V115
  • [8] Dickson Leonard Eugene, 1958, Linear Groups: With an Exposition of the Galois Field Theory
  • [9] ON THE STRUCTURE OF LINEAR GRAPHS
    ERDOS, P
    STONE, AH
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (12) : 1087 - 1091
  • [10] THE ERDOS-KO-RADO THEOREM FOR VECTOR-SPACES
    FRANKL, P
    WILSON, RM
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 43 (02) : 228 - 236