Smooth projective toric varieties whose nontrivial nef line bundles are big

被引:9
作者
Fujino, Osamu [1 ]
Sato, Hiroshi [2 ]
机构
[1] Kyoto Univ, Fac Sci, Dept Math, Sakyo Ku, Kyoto 6068502, Japan
[2] Gifu Shotoku Gakuen Univ, Fac Econ & Informat, Gifu 5008288, Japan
关键词
Toric variety; Mori theory; nef cone; pseudo-effective cone; CLASSIFICATION;
D O I
10.3792/pjaa.85.89
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any n >= 3, we explicitly construct smooth projective toric n-folds of Picard number >= 5, where any nontrivial nef line bundles are big.
引用
收藏
页码:89 / 94
页数:6
相关论文
共 12 条
[1]   ON THE CLASSIFICATION OF SMOOTH PROJECTIVE TORIC VARIETIES [J].
BATYREV, VV .
TOHOKU MATHEMATICAL JOURNAL, 1991, 43 (04) :569-585
[2]   Smooth complete toric threefolds with no nontrivial nef line bundles [J].
Fujino, O ;
Payne, S .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2005, 81 (10) :174-179
[3]   On the Kleiman-Mori cone [J].
Fujino, O .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2005, 81 (05) :80-84
[4]  
Fujino O, 2004, MICH MATH J, V52, P649
[5]   Notes on toric varieties from Mori theoretic viewpoint [J].
Fujino, O .
TOHOKU MATHEMATICAL JOURNAL, 2003, 55 (04) :551-564
[6]  
Fulton W., 1993, H ROEVER LECT GEOMET, V131
[7]  
Lazarsfeld Laz04 R., 2004, Ergeb. Math. Grenzgeb., V49, DOI [10.1007/978-3-642-18808-4, DOI 10.1007/978-3-642-18808-4]
[8]  
MATSUKI K, 1995, MEM AM MATH SOC, V116
[9]   CLASSIFICATION OF FANO 3-FOLDS WITH B2 GREATER-THAN-OR-EQUAL TO 2 [J].
MORI, S ;
MUKAI, S .
MANUSCRIPTA MATHEMATICA, 1981, 36 (02) :147-162
[10]  
Oda T., 1988, ERGEBNISSE MATH IHRE, V3, P15