Metabolic Effects of Glucose-Fructose Co-Ingestion Compared to Glucose Alone during Exercise in Type 1 Diabetes

被引:9
作者
Bally, Lia [1 ]
Kempf, Patrick [1 ]
Zueger, Thomas [1 ]
Speck, Christian [1 ]
Pasi, Nicola [1 ]
Ciller, Carlos [2 ,3 ,4 ]
Feller, Katrin [1 ]
Loher, Hannah [1 ]
Rosset, Robin [5 ]
Wilhelm, Matthias [6 ]
Boesch, Chris [7 ,8 ]
Buehler, Tania [7 ,8 ]
Dokumaci, Ayse S. [7 ,8 ]
Tappy, Luc [5 ]
Stettler, Christoph [1 ]
机构
[1] Univ Bern, Univ Hosp Bern, Inselspital, Dept Diabet Endocrinol Clin Nutr & Metab, CH-3010 Bern, Switzerland
[2] Univ Hosp Ctr, Dept Radiol, CH-1011 Lausanne, Switzerland
[3] Univ Lausanne, CH-1011 Lausanne, Switzerland
[4] Ctr Biomed Imaging CIBM, Signal Proc Core, CH-1015 Lausanne, Switzerland
[5] Univ Lausanne, Fac Biol & Med, Dept Physiol, CH-1005 Lausanne, Switzerland
[6] Univ Bern, Univ Hosp Bern, Interdisciplinary Ctr Sports Med, Dept Cardiol,Inselspital, CH-3010 Bern, Switzerland
[7] Univ Bern, Dept Clin Res, CH-3010 Bern, Switzerland
[8] Univ Bern, Dept Radiol, CH-3010 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
carbohydrates; glucose; fructose; type; 1; diabetes; exercise; glycaemia; substrate oxidation; PHYSICAL-ACTIVITY; INSULIN SENSITIVITY; OXIDATION; PERFORMANCE; INTENSITY; MUSCLE; LACTATE; DEHYDROGENASE; HYPOGLYCEMIA; QUANTITATION;
D O I
10.3390/nu9020164
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
This paper aims to compare the metabolic effects of glucose-fructose co-ingestion (GLUFRU) with glucose alone (GLU) in exercising individuals with type 1 diabetes mellitus. Fifteen male individuals with type 1 diabetes (HbA1c 7.0% +/- 0.6% (53 +/- 7 mmol/mol)) underwent a 90 min iso-energetic continuous cycling session at 50% VO2max while ingesting combined glucose-fructose (GLUFRU) or glucose alone (GLU) to maintain stable glycaemia without insulin adjustment. GLUFRU and GLU were labelled with C-13-fructose and C-13-glucose, respectively. Metabolic assessments included measurements of hormones and metabolites, substrate oxidation, and stable isotopes. Exogenous carbohydrate requirements to maintain stable glycaemia were comparable between GLUFRU and GLU (p = 0.46). Fat oxidation was significantly higher (5.2 +/- 0.2 vs. 2.6 +/- 1.2 mg center dot kg(-1)center dot min(-1), p < 0.001) and carbohydrate oxidation lower (18.1 +/- 0.8 vs. 24.5 +/- 0.8 mg center dot kg (-1)center dot min(-1) p < 0.001) in GLUFRU compared to GLU, with decreasedmuscle glycogen oxidation in GLUFRU(10.2 +/- 0.9 vs. 17.5 +/- 1.0mg center dot kg(-1)center dot min(-1), p < 0.001). Lactate levels were higher (2.2 +/- 0.2 vs. 1.8 +/- 0.1 mmol/L, p = 0.012) in GLUFRU, with comparable counter-regulatory hormones between GLUFRU and GLU (p > 0.05 for all). Glucose and insulin levels, and total glucose appearance and disappearance were comparable between interventions. Glucose-fructose co-ingestion may have a beneficial impact on fuel metabolism in exercising individuals with type 1 diabetes without insulin adjustment, by increasing fat oxidation whilst sparing glycogen.
引用
收藏
页数:13
相关论文
共 53 条
[1]   Physical Activity Offsets the Negative Effects of a High-Fructose Diet [J].
Bidwell, Amy J. ;
Fairchild, Timothy J. ;
Redmond, Jessica ;
Wang, Long ;
Keslacy, Stefan ;
Kanaley, Jill A. .
MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2014, 46 (11) :2091-2098
[2]   ROLE OF THE KIDNEY IN THE METABOLISM OF FRUCTOSE IN 60-HOUR FASTED HUMANS [J].
BJORKMAN, O ;
FELIG, P .
DIABETES, 1982, 31 (06) :516-520
[3]   EFFECT OF MUSCLE GLYCOGEN DEPLETION ON INVIVO INSULIN ACTION IN MAN [J].
BOGARDUS, C ;
THUILLEZ, P ;
RAVUSSIN, E ;
VASQUEZ, B ;
NARIMIGA, M ;
AZHAR, S .
JOURNAL OF CLINICAL INVESTIGATION, 1983, 72 (05) :1605-1610
[4]   Isomaltulose Improves Glycemia and Maintains Run Performance in Type 1 Diabetes [J].
Bracken, Richard Michael ;
Page, Rhydian ;
Gray, Benjamin ;
Kilduff, Liam P. ;
West, Daniel J. ;
Stephens, Jeffrey W. ;
Bain, Stephen C. .
MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2012, 44 (05) :800-808
[5]   Barriers to Physical Activity Among Patients With Type 1 Diabetes [J].
Brazeau, Anne-Sophie ;
Rabasa-Lhoret, Remi ;
Strychar, Irene ;
Mircescu, Hortensia .
DIABETES CARE, 2008, 31 (11) :2108-2109
[6]   Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle [J].
Brooks, GA ;
Dubouchaud, H ;
Brown, M ;
Sicurello, JP ;
Butz, CE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (03) :1129-1134
[7]   QUANTITATION OF THE PATHWAYS FOLLOWED IN THE CONVERSION OF FRUCTOSE TO GLUCOSE IN LIVER [J].
CHANDRAMOULI, V ;
KUMARAN, K ;
EKBERG, K ;
WAHREN, J ;
LANDAU, BR .
METABOLISM-CLINICAL AND EXPERIMENTAL, 1993, 42 (11) :1420-1423
[8]   Contribution of galactose and fructose to glucose homeostasis [J].
Coss-Bu, Jorge A. ;
Sunchag, Agneta L. ;
Haymond, Morey W. .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2009, 58 (08) :1050-1058
[9]   Menstrual cycle phase and sex influence muscle glycogen utilization and glucose turnover during moderate-intensity endurance exercise [J].
Devries, Michaela C. ;
Hamadeh, Mazen J. ;
Phillips, Stuart M. ;
Tarnopolsky, Mark A. .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2006, 291 (04) :R1120-R1128
[10]   Insulin effects in muscle and adipose tissue [J].
Dimitriadis, George ;
Mitrou, Panayota ;
Lambadiari, Vaia ;
Maratou, Eirini ;
Raptis, Sotirios A. .
DIABETES RESEARCH AND CLINICAL PRACTICE, 2011, 93 :S52-S59