Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption

被引:302
作者
Eren, Baran [1 ]
Zherebetskyy, Danylo [1 ]
Patera, Laerte L. [1 ,2 ,3 ,4 ]
Wu, Cheng Hao [1 ,5 ]
Bluhm, Hendrik [6 ]
Africh, Cristina [2 ]
Wang, Lin-Wang [1 ]
Somorjai, Gabor A. [1 ,5 ]
Salmeron, Miquel [1 ,7 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[2] CNR IOM, Lab TASC, Str Statale 14,Km 163-5, I-34149 Trieste, Italy
[3] Univ Trieste, Dept Phys, Via A Valerio 2, I-34127 Trieste, Italy
[4] Univ Trieste, CENMAT, Via A Valerio 2, I-34127 Trieste, Italy
[5] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
关键词
SCANNING-TUNNELING-MICROSCOPY; METHANOL SYNTHESIS; PHOTOELECTRON-SPECTROSCOPY; AMBIENT CONDITIONS; COPPER SURFACES; CHEMISTRY; SCIENCE; WATER; CATALYSIS; COVERAGE;
D O I
10.1126/science.aad8868
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The (111) surface of copper (Cu), its most compact and lowest energy surface, became unstable when exposed to carbon monoxide (CO) gas. Scanning tunneling microscopy revealed that at room temperature in the pressure range 0.1 to 100 Torr, the surface decomposed into clusters decorated by CO molecules attached to edge atoms. Between 0.2 and a few Torr CO, the clusters became mobile in the scale of minutes. Density functional theory showed that the energy gain from CO binding to low-coordinated Cu atoms and the weakening of binding of Cu to neighboring atoms help drive this process. Particularly for softer metals, the optimal balance of these two effects occurs near reaction conditions. Cluster formation activated the surface for water dissociation, an important step in the water-gas shift reaction.
引用
收藏
页码:475 / 478
页数:4
相关论文
共 31 条
[1]   The evolution of CO adsorption on Cu(111) as studied with bare and CO-functionalized scanning tunneling tips [J].
Bartels, L ;
Meyer, G ;
Rieder, KH .
SURFACE SCIENCE, 1999, 432 (03) :L621-L626
[2]   Heterogeneous Catalysis of CO2 Conversion to Methanol on Copper Surfaces [J].
Behrens, Malte .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (45) :12022-12024
[3]  
Behrens M, 2012, SCIENCE, V336, P893, DOI [10.1126/science.1219831, 10.1126/science.12198331]
[4]   The structure and reactivity of surfaces revealed by scanning tunneling microscopy [J].
Besenbacher, Flemming ;
Thostrup, Peter ;
Salmeron, Miquel .
MRS BULLETIN, 2012, 37 (07) :677-681
[5]   Reaction of CO with Preadsorbed Oxygen on Low-Index Copper Surfaces: An Ambient Pressure X-ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study [J].
Eren, Baran ;
Lichtenstein, Leonid ;
Wu, Cheng Hao ;
Bluhm, Hendrik ;
Somorjai, Gabor A. ;
Salmeron, Miquel .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (26) :14669-14674
[6]   Reactions at surfaces: From atoms to complexity (Nobel lecture) [J].
Ertl, Gerhard .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (19) :3524-3535
[7]   The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions [J].
Herbschleb, C. T. ;
van der Tuijn, P. C. ;
Roobol, S. B. ;
Navarro, V. ;
Bakker, J. W. ;
Liu, Q. ;
Stoltz, D. ;
Canas-Ventura, M. E. ;
Verdoes, G. ;
van Spronsen, M. A. ;
Bergman, M. ;
Crama, L. ;
Taminiau, I. ;
Ofitserov, A. ;
van Baarle, G. J. C. ;
Frenken, J. W. M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (08)
[8]   COHESIVE ENERGY OF NOBLE METALS [J].
KAMBE, K .
PHYSICAL REVIEW, 1955, 99 (02) :419-422
[9]   METHANOL SYNTHESIS [J].
KLIER, K .
ADVANCES IN CATALYSIS, 1982, 31 :243-313
[10]   A high-pressure scanning tunneling microscope [J].
Laegsgaard, E ;
Osterlund, L ;
Thostrup, P ;
Rasmussen, PB ;
Stensgaard, I ;
Besenbacher, F .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (09) :3537-3542