Superlattice-induced minigaps in graphene band structure due to underlying one-dimensional nanostructuration

被引:15
作者
Celis, A. [1 ]
Nair, M. N. [1 ,2 ]
Sicot, M. [3 ]
Nicolas, F. [2 ]
Kubsky, S. [2 ]
Malterre, D. [3 ]
Taleb-Ibrahimi, A. [2 ]
Tejeda, A. [1 ,2 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, CNRS, Lab Phys Solides, F-91405 Orsay, France
[2] Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France
[3] Univ Lorraine, UMR 7198, Inst Jean Lamour, CNRS, F-54506 Vandoeuvre Les Nancy, France
关键词
DIRAC FERMIONS; STATES; GAP; SURFACES; POINTS; LAYER;
D O I
10.1103/PhysRevB.97.195410
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have studied the influence of one-dimensional periodic nanostructured substrates on graphene band structure. One-monolayer-thick graphene is extremely sensitive to periodic terrace arrays, as demonstrated on two different nanostructured substrates, namely Ir(332) and multivicinal curved Pt(111). Photoemission shows the presence of minigaps related to the spatial periodicity. The potential barrier strength of the one-dimensional periodic nanostructuration can be tailored with the step-edge type and the nature of the substrate. The minigap opening further demonstrates the presence of backward scattered electronic waves on the surface and the absence of Klein tunneling on the substrate, probably due to the fast variation of the potential, of a spatial extent of the order of the lattice parameter of
引用
收藏
页数:6
相关论文
共 49 条
[1]   Understanding intercalation structures formed under graphene on Ir(111) [J].
Andersen, Mie ;
Hornekaer, Liv ;
Hammer, Bjork .
PHYSICAL REVIEW B, 2014, 90 (15)
[2]  
Ashcroft N W., 2003, Solid State Physics
[3]   Electron-phonon coupling in potassium-doped graphene: Angle-resolved photoemission spectroscopy [J].
Bianchi, M. ;
Rienks, E. D. L. ;
Lizzit, S. ;
Baraldi, A. ;
Balog, R. ;
Hornekaer, L. ;
Hofmann, Ph. .
PHYSICAL REVIEW B, 2010, 81 (04)
[4]   Quasiparticle dynamics in graphene [J].
Bostwick, Aaron ;
Ohta, Taisuke ;
Seyller, Thomas ;
Horn, Karsten ;
Rotenberg, Eli .
NATURE PHYSICS, 2007, 3 (01) :36-40
[5]   Emerging Zero Modes for Graphene in a Periodic Potential [J].
Brey, L. ;
Fertig, H. A. .
PHYSICAL REVIEW LETTERS, 2009, 103 (04)
[6]   Photoemission studies of quantum well states in thin films [J].
Chiang, TC .
SURFACE SCIENCE REPORTS, 2000, 39 (7-8) :181-235
[7]   Wide Band Gap Semiconductor from a Hidden 2D Incommensurate Graphene Phase [J].
Conrad, Matthew ;
Wang, Feng ;
Nevius, Meredith ;
Jinkins, Katherine ;
Celis, Arlensiu ;
Nair, Maya Narayanan ;
Taleb-Ibrahimi, Amina ;
Tejeda, Antonio ;
Garreau, Yves ;
Vlad, Alina ;
Coati, Alessandro ;
Miceli, Paul F. ;
Conrad, Edward H. .
NANO LETTERS, 2017, 17 (01) :341-347
[8]   Structural coherency of graphene on Ir(111) [J].
Coraux, Johann ;
N'Diaye, Alpha T. ;
Busse, Carsten ;
Michely, Thomas .
NANO LETTERS, 2008, 8 (02) :565-570
[9]   CONFINEMENT OF ELECTRONS TO QUANTUM CORRALS ON A METAL-SURFACE [J].
CROMMIE, MF ;
LUTZ, CP ;
EIGLER, DM .
SCIENCE, 1993, 262 (5131) :218-220
[10]   Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices [J].
Dean, C. R. ;
Wang, L. ;
Maher, P. ;
Forsythe, C. ;
Ghahari, F. ;
Gao, Y. ;
Katoch, J. ;
Ishigami, M. ;
Moon, P. ;
Koshino, M. ;
Taniguchi, T. ;
Watanabe, K. ;
Shepard, K. L. ;
Hone, J. ;
Kim, P. .
NATURE, 2013, 497 (7451) :598-602